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Abstract

This paper proposes a class of stochastic volatility (SV) models which offers an alter-
native to the one introduced in Andersen (1994). The class encompasses all standard
SV models that have appeared in the literature, including the well known lognormal
model, and allows us to empirically test all standard specifications in a convenient way.
We develop a likelihood-based technique for analyzing the class. Daily dollar/pound
exchange rate data reject all the standard models and suggest evidence of nonlinear SV.
An efficient algorithm is proposed to study the implications of this nonlinear SV on
pricing currency options and it is found that the lognormal model overprices options.
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1 Introduction

Modelling the volatility of financial time series via stochastic volatility (SV) models

has received a great deal of attention in the theoretic finance literature as well as in

the empirical literature. Prices of options based on SV models are shown to be more

accurate than those based on the Black-Scholes model (see, for example, Melino and

Turnbull (1990)). Moreover, the SV model offers a powerful alternative to GARCH-type

models to explain the well documented time varying volatility. Empirical successes of

the lognormal SV model relative to GARCH-type models are documented in Danielsson

(1994), Geweke (1994b), and Kim, Shephard and Chib (1998) in terms of in-sample

fitting, and in Yu (2002) in terms of out-of-sample forecasting.

The most widely used SV model is the lognormal specification which is built upon

the models of Clark (1973) and Tauchen and Pitt (1983) and first introduced by Taylor

(1982, 1986 and 1994). It has been used to price stock options in Wiggins (1987) and

Scott (1987) and currency options in Chesney and Scott (1989). Since it assumes that

the logarithmic volatility follows an Ornstein-Uhlenbeck (OU) process, an implication

of this specification is that the marginal distribution of logarithmic volatility is nor-

mal. This assumption has very important implications for financial economics and risk

management.

Many other SV models coexist in the theoretical finance literature as well as in the

empirical literature. For example, Stein and Stein (1991) and Johnson and Shanno

(1987) assume the square root of volatility follows, respectively, an OU process and a

geometric Brownian motion, while Hull and White (1987) and Heston (1993) assume a

geometric Brownian motion and a square-root process for volatility. In the discrete time

case, various SV models can be regarded as generalizations to the corresponding GARCH

models. For example, a polynomial SV model is a generalization of GARCH(1,1) (Boller-

slev (1986)) while a square root polynomial SV model is a generalization of standard

deviation (SD)-GARCH(1,1). Andersen (1994) introduces a general class of SV models,

of which a class of polynomial SV models has been emphasized. This class encompasses

most of the discrete time SV models in the literature. Other more recent classes of

SV models include those proposed by Barndorff-Nielsen and Shephard (2001) and by
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Meddahi (2001).

Despite all these alternative specifications, there is a lack of procedure for selecting

an appropriate functional form of stochastic volatility.2 The specification of the correct

stochastic volatility function, on the other hand, is very important in several respects.

First, different functional forms lead to different formulae for option pricing. Misspecifi-

cation of the stochastic volatility function can result in incorrect option prices. Second,

the marginal distribution of volatility depends upon the functional form of stochastic

volatility.

In this paper, we propose a new class of SV models, namely, nonlinear SV models.

Like the class of Andersen (1994), it includes as special cases many SV models that

have appeared in the literature. It overlaps with but does not encompass the class of

Andersen. Different from his class which precludes a simple comparison of different SV

models, an advantage of our proposed class is the ease with which different specifications

on stochastic volatility can be tested. In fact, the specification test is based on a single

parameter. Furthermore, as a byproduct of this general way of modelling stochastic

volatility, one obtains the functional form of transformation which induces marginal

normality of volatility. We empirically test all standard specifications against our general

specification using daily dollar/pound data. Our empirical test of all standard SV

models is, to the best of our knowledge, the first in the literature. The empirical test

rejects all standard SV models and favors a nonlinear SV specification. Implications

of this nonlinearity on some important financial variables are examined. For example,

without sacrificing the overall goodness-of-fit, our nonlinear SV model improves the fit

to data when the market has little movement. We also find that our model implies a

smoother volatility series. Moreover, the marginal distribution of volatility is different

from a lognormal distribution. Most importantly, an application of our nonlinear SV

model to option pricing shows that the lognormal SV model overprices currency options,

particularly out-of-the-money options.

The paper is organized as follows. Section 2 presents this class of nonlinear SV

2It is well known that a GARCH process converges to a relevant stochastic volatility process (Nelson
(1990)). A specification test based on a GARCH family can be suggestive of an appropriate stochastic
volatility specification; see for example, Hentschel (1995). Such a test, however, is by no mean a direct
test of stochastic volatility specifications.
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models. In Section 3, a Markov Chain Monte Carlo (MCMC) method is developed to

provide likelihood-based analysis of the proposed class of models. The class is fitted

to daily observations on dollar/pound exchange rate series in Section 4. In Section 5

we illustrate the importance of the proposed models in terms of their implications on

pricing currency options. In Section 6 we apply the new models to analyze four other

exchange rates. Finally in Section 7 we present conclusions and possible extensions.

2 A Class of Nonlinear SV Models

In the theoretic finance literature on option pricing, the SV model is often formulated

in terms of stochastic differential equations. For instance, Wiggins (1987), Chesney and

Scott (1989), and Scott (1991) specify the following model for the asset price P (t) and

the corresponding volatility σ2(t),

dP (t)/P (t) = αdt+ σ(t)dB1(t), (2.1)

d lnσ2(t) = λ(ξ − ln σ2(t))dt+ γdB2(t), (2.2)

where B1(t) and B2(t) are two Brownian motions and corr(dB1(t), dB2(t)) = ρ with ρ

capturing the so-called leverage effect.

In the empirical literature, the above continuous time model is often discretized.

The discrete time SV model may be obtained, for example, via the Euler-Maruyama

approximation. The approximation, after a location shift and reparameterization, leads

to the lognormal SV model given by

Xt = σtet, (2.3)

lnσ2
t = µ+ φ(lnσ2

t−1 − µ) + σvt, (2.4)

where Xt is a continuously compounded return and et, vt are two sequences of indepen-

dent and identically distributed (iid) N(0, 1) random variables with corr(et, vt+1) = ρ.

The above model is equivalently represented, in the majority of empirical literature, by

Xt = exp(
1

2
ht)et, (2.5)

ht = µ+ φ(ht−1 − µ) + σvt, (2.6)
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where ht = lnσ2
t .

The lognormal SV model specifies that the logarithmic volatility follows an AR(1)

process. However, this relationship may not always be warranted by the data. A natural

generalization to this relationship is to allow a general (nonlinear) smooth function of

volatility to follow an AR(1) process. That is,

Xt = σtet, (2.7)

h(σ2
t , δ) = µ+ φ[h(σ2

t−1, δ)− µ] + σvt, (2.8)

where et and vt are two N(0, 1) sequences with corr(et, vt+1) = ρ, and h(·, δ) is a smooth

function indexed by a parameter δ. A nice choice of this function is the Box-Cox power

function (Box and Cox (1964)):

h(t, δ) =







(tδ − 1)/δ, if δ 6= 0,

ln t, if δ = 0.
(2.9)

As the function h(·, δ) is specified as a general nonlinear function, the model is thus

termed in this paper the nonlinear SV (N-SV hereafter) model. Several attractive

features of this new class of SV models include: i) as we will show below it includes the

lognormal SV model and the other popular SV models as special cases, ii) it adds great

flexibility to the functional form, and iii) it allows a simple test for the lognormal SV

specification, i.e., a test of H0 : δ = 0, and some other “classical” SV specifications. If

we write ht = h(σ2
t , δ), then we can re-write the N-SV models as

Xt = [g(ht, δ)]
1/2et, (2.10)

ht = µ+ φ(ht−1 − µ) + σvt, (2.11)

where g(ht, δ) is the inverse Box-Cox transformation of the form

g(ht, δ) =







(1 + δht)
1/δ, if δ 6= 0,

exp(ht), if δ = 0.
(2.12)

Denote the vector of model parameters by θ = (µ, δ, φ, σ, ρ).

The idea of our proposed N-SV models is similar to that made in Higgins and Bera

(1992) from the linear ARCH model (Engle (1982)) to the nonlinear ARCH (NARCH)
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model. Obviously, our model provides a stochastic volatility generalization of a nonlinear

GARCH(1,1) model.

It can be seen as δ → 0, (1 + δht)
1/(2δ) → exp(0.5ht) and ((σ2

t )
δ − 1)/δ → lnσ2

t .

Hence the proposed N-SV model includes the lognormal SV model as a special case. If

δ = 1, the variance equation (2.8) becomes

σ2
t = µ′ + φ(σ2

t−1 − µ′) + σvt, (2.13)

where µ′ = µ + 1. This is a polynomial SV model in Andersen (1994). According to

this specification, volatility follows a normal distribution as its marginal distribution. If

δ = 0.5, the variance equation (2.8) becomes

σt = µ′′ + φ(σt−1 − µ′′) + 0.5σvt, (2.14)

where µ′′ = 0.5µ + 1. This is a square root polynomial SV model in Andersen (1994)

and can be regarded as a discrete time version of the continuous time SV model in Scott

(1987) and Stein and Stein (1991). As a result, the marginal distribution of the square

root of volatility is Gaussian.

In Table 1 we summarize some well-known SV models and show their parameter

relations with our model. For the continuous time SV models, their Euler discrete time

versions are considered. It can be seen that all these models can be obtained from our

model by placing the appropriate restrictions on the three parameters δ, µ and φ. In

fact, all the models except our model require δ to be 0, 0.5, or 1.3 For a general δ,

our model is different from any of them and δ provides some idea about the degree of

departure from a “classical” parametric SV model. See Figure 1 for the comparison of

the square root of inverse Box-Cox transformation, (1 + δht)
1/(2δ) (or σt), as a function

of ht for various values of δ over the interval [−2, 2]. This is a possible range that actual

ht may lie within in the framework of lognormal SV model.

The Box-Cox transformation has been applied in various areas in finance. One of the

most relevant applications to our work may be that proposed by Higgins and Bera (1992)

3Some specifications in Table 1 may be different from the actual specifications used in the original
references. However, they are equivalent to each other via Ito’s lemma. For example, Heston (1993)
adopts a square root specification for σ2

t
which is identical to assuming σt follows a particular OU

process.
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who introduce the NARCH model. Another relevant application is Hentschel (1995) who

introduces a family of GARCH models by applying the Box-Cox transformation to the

conditional standard deviation. A nice feature of our proposed class is that it provides a

simple way to test the null hypothesis of polynomial SV specifications against a variety

of non-polynomial alternatives. Moreover, as a consequence of specification testing,

our proposed class provides an effective channel to check the marginal distribution of

unobserved volatility.

We now establish some basic statistical properties of the N-SV models. It is easy to

see that ht is stationary and ergodic if φ < 1 and that if so

µh ≡ E(ht) = µ, σ2
h ≡ V ar(ht) =

σ2

1− φ
, and ρ(`) ≡ Corr(ht, ht−`) = φ`.

It follows that Xt is stationary and ergodic as it is the product of two stationary and

ergodic processes. For the moments of Xt, a distributional constraint has to be imposed

on vt or ht. As σ
2
t is nonnegative, the exact normality of vt is incompatible unless δ = 0

or 1/δ is an even integer.4 Our experience suggests that, as far as statistical inferences

and pricing options are concerned, the assumption of the exact normality of vt works

well for all the empirically possible values of parameters that we have encountered.5

Unfortunately, even in the case where 1/δ is an even integer, it does not seem to be

possible to obtain an analytic form for the moments of the model. Moreover, unlike the

lognormal SV model, it appears that there is no obvious way to linearize the mean equa-

tion (2.10). These two undesirable properties make the classical econometric treatments

of SV models, such as generalized method of moments (GMM) and quasi maximum

likelihood (QML), difficult to implement for the N-SV model.

To conclude this section, we attempt to offer a heuristic interpretation of δ from a

finance perspective.6 For ease of interpretation, we restrict ourselves to the range of

4This is the well known truncation problem with the Box-Cox power transformation. The truncation
effect is negligible if δσh/(1 + δµ) is small, which is achieved when i) δ is small, or ii) µ is large, or iii)
σh is small. See Yang (1999) for a discussion on this.

5The same problem occurs in the model proposed by Stein and Stein (1991). They claim that “for a
wide range of empirically reasonable parameter values, the probability of passing the barrier at σ = 0
is so small as to be of no significant consequence.”

6Our treatment here is analogous with the introduction of continuously compounded returns. We
are grateful to Steve Satchell for pointing this out to us.
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positive δ. Define m = 1/δ and re-write the inverse Box-Cox transformation as

σ2
t = (1 +

ht
m
)m =

m
∏

i=1

(1 + hit), (2.15)

where {hit} can be understood as a sequence of intra-day volatility movement. From a

market microstructure perspective, intra-day volatility movement are caused primarily

by the arrival of new information. Therefore, according to equation (2.15) one can argue

that on average there are m times per day of new information arrivals and ht represents

the average impact of the information on volatility. In the lognormal SV model, as

m → ∞ and σ2
t → exp(ht), new information arrives at the market very frequently.

In the N-SV model with a positive, finite value of δ, say δ = 0.25, on average new

information arrives at the market 4 times per day.

3 Likelihood-Based Analysis of Nonlinear SV Mod-

els

3.1 Why Use MCMC?

The literature on estimating SV models is vast. This is in part due to the fact that

the likelihood function has no closed form expression for SV models and hence the

maximum likelihood approach is extremely difficult to implement. As a consequence,

the SV model becomes a central example to compare the relative merits of alternative

estimation procedures.

Less computationally intensive methods often involve no simulation. These include

GMM (Andersen and Sorensen (1996) and Hansen and Scheinkman (1995)), QML (Har-

vey, Ruiz and Shephard (1994) and Ruiz (1994)), and the estimation method via the

empirical characteristic function (Knight, Satchell and Yu (2002) and Singleton (2001)).

Unfortunately, it is difficult to apply these methods in our settings due to the nonlinear

structure in the mean equation. More efficient estimation methods often involve sim-

ulations and are generally computationally more expensive. These include simulated

maximum likelihood methods proposed by Danielsson and Richard (1993) and Daniels-

son (1994) for estimating the discrete time SV model and by Durham and Gallant
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(2002) for estimating the continuous time SV model; the maximum likelihood Monte

Carlo method of Sandmann and Koopman (1998); the simulation method using im-

portant sampling and antithetic variables proposed by Durbin and Koopman (2000);

the indirect inference proposed of Gouriéroux, Monfort and Renault; simulated method

of moments of Duffie and Singleton (1993) and its refinement, efficient method of mo-

ments of Gallant and Tauchen (1996); Markov Chain Monte Carlo methods proposed

by Jacquier, Polson and Rossi (1994) and improved by Kim et al. (1998) in the discrete

time context and by Eraker (2001) in the continuous time context.

The relative merits of the alternative methods depend not only on the finite sample

efficiency but also on the flexibility to adapt to modifications of model specification.

Moreover, in the framework of SV models, a good method should also allow one to

extract the unobserved volatility model with a low cost and to do simple but useful

model diagnostics. Judged by these criteria, MCMC is our choice for inferences since it

provides a flexible and highly efficient approach to analyzing SV models.

Andersen, Chung and Sorensen (1999) document a finite sample comparison of vari-

ous methods in Monte Carlo studies and find that MCMC is the most efficient estimation

tool. Their finding is not surprising since MCMC provides a full likelihood-based infer-

ence. Moreover, Meyer and Yu (2000) and Chib, Nardari and Shephard (2002) discuss

its flexibility of modelling modifications of the lognormal SV model. Furthermore, as a

byproduct of parameter estimation, MCMC methods provide estimates of latent volatil-

ity and predictive distributions for volatility (see for example Jacquier et al. (1994)

and Eraker, Johannes and Polson (2001)). In addition to providing an efficient way

for Bayesian inference, MCMC can also be used to calculate the likelihood, compute

the filtered volatility estimates, and do diagnostic checking (see for example Kim et

al. (1998)). As a consequence of likelihood evaluation, the likelihood ratio test can be

used to compare model performance of alternative specifications. Alternatively, one can

use Bayesian methods for model comparison. Examples include Bayes factors (Chib

(1995)) and deviance information criterion (Berg, Meyer and Yu (2002)) and both can

be obtained based on the MCMC output.

In this paper the proposed N-SV models are to be applied to exchange rate series.

Although the leverage effect is particularly important for stock returns, it has been
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found to be much less severe for exchange rates (Meyer and Yu (2000)). Consequently,

we impose a restriction into the N-SV model, that is, ρ = 0. Hence the vector of model

parameters reduces to θ = (µ, δ, φ, σ).7

3.2 Estimating Nonlinear SV Models

Instead of searching for the analytic expression of a posterior density, MCMC methods

aim to provide a general mechanism to sample the parameter vector from its posterior

density. In the context of SV models, it is well known that the intractable likelihood

function f(X|θ) makes the direct analysis of the posterior density f(θ|X) extremely

difficult, where X = (X1, X2, · · · , XT ). To circumvent this problem, a common practice

is to augment the parameter vector to (θ,h) where h = (h1, h2, · · · , hT ). MCMC proce-

dures can then be developed to sample the posterior density f(θ,h|X) without dealing

with f(X|θ).

Instead of simulating directly from the posterior distribution which is often in-

tractable, MCMC methods set up a Markov chain for each variate, and its stationary

distribution is the same as the posterior density. When the Markov chain converges, the

simulated values may be regarded as a sample obtained from the posterior and hence

can be used as the basis for making statistical inferences.

Many MCMC algorithms have been proposed to sample the parameters and the

latent volatility process in the context of lognormal SV model. Examples include the

Metropolis-Hastings algorithm developed by Jacquier et al. (1994), the single-move

Gibbs sampling algorithm discussed in Shephard (1993), Geweke (1994a), Shephard

and Kim (1994), and multi-move or block-wise Gibbs sampling algorithms proposed

in Shephard and Pitt (1997) and Kim et al. (1998). The most simplistic sampler

for analyzing a lognormal SV model is the single-move algorithm which updates one

variate at a time. Kim et al. (1998) showed that for the lognormal SV model the

convergence of the single-move algorithm is slow due to the high posterior correlations

among components of h. Kim et al. (1998) developed several multi-move algorithms by

approximating the log-chi square distribution with a discrete mixture of normals (i.e.

7Although we do not consider the SV model with the leverage effect in this paper, we expect our
algorithm can be modified to estimate ρ if one adopts the representation of Meyer and Yu (2000).
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the so-called offset mixture of normals approximation) to facilitate a joint draw of the

vector h.

The MCMC algorithm developed in this paper falls somewhere between the single-

move and multi-move algorithms. It is different from the single-move algorithm in that φ

and δ are sampled simultaneously according to the Metropolis-Hastings rule. In terms

of sampling ht, our algorithm involves a single-move procedure and may encounter a

slow convergence. However, we calculate the partial posterior of ht when updating

components of h sequentially. As a consequence this procedure enables us to improve

the simulation efficiency over the single-move algorithm. Moreover, the N-SV model has

no obvious offset mixture of normals representation and this precludes a straightforward

generalization of the multi-move algorithms of Kim et al. (1998). Finally, our method

does not use an approximation.

To develop our sampling algorithm, we assume the priors of model parameters are

respectively, σ2 ∼ IG(p/2, Sσ/2), (φ + 1)/2 ∼ Beta(ω, γ) and δ ∼ N(µδ, σ
2
δ ), where IG

denotes the inverse-gamma distribution. The joint posterior density for model parame-

ters and latent volatilities is

f(θ,h|X) = prior(θ)× p(h1|θ)×
T
∏

t=2

p(ht|ht−1, θ)×
T
∏

t=1

p(Xt|ht, θ)

∝ (1 + φ)ω−0.5(1− φ)γ−0.5 exp

{

−
(δ − µδ)

2

2σ2
δ

}

(3.16)

×

[

T
∏

t=1

g(ht, δ)
−1/2

]

exp

{

−
T
∑

t=1

X2
t

2g(ht, δ)

}

[

1

σ2

]
T+p

2
+1

× exp

{

−
(1− φ2)(h1 − µ)2 +

∑T
t=2 [(ht − µ)− φ(ht−1 − µ)]2 + Sσ

2σ2

}

,

where p, Sσ, ω, γ, µδ and σ2
δ are all hyperparameters to be defined by users. After

integrating out σ2 from the joint posterior, we obtain the logarithm of the marginal
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posterior of (φ, δ,h),

ln f(φ, δ,h|X) ∝ (ω − 0.5) ln(1 + φ) + (γ − 0.5) ln(1− φ) (3.17)

−
(δ − µδ)

2

2σ2
δ

−
1

2

T
∑

t=1

ln g(ht, δ)−
T
∑

t=1

X2
t

2g(ht, δ)

−
T + p

2
ln

{

(1− φ2)(h1 − µ)2 +
∑T

t=2 [(ht − µ)− φ(ht−1 − µ)]2 + Sσ
2

}

.

The Gibbs sampling algorithm can then be used to sample φ, δ and h. Given the

posterior samples of φ, δ and h obtained from the marginal posterior ln f(φ, δ,h|X), the

parameter σ2 can be sampled directly from,

σ2 ∼ IG

(

T + p

2
,
1

2

[

(1− φ2)(h1 − µ)2 +
T
∑

t=2

[(ht − µ)− φ(ht−1 − µ)]2 + Sσ

])

.

(3.18)

Kim et al. (1998) showed that the marginal posterior of µ is N(µ̂∗, σ̂2
µ) with







µ̂∗ = σ̂2
µ{

1−φ2

σ2 h1 +
1−φ
σ2

∑T
t=2(ht − φht−1)}

σ̂2
µ = σ2 {(T − 1)(1− φ2) + (1− φ2)}

−1
. (3.19)

Given the posterior samples of φ, δ, σ and h, the parameter µ can be sampled directly

from this marginal posterior.8 Hence our sampling algorithm may be summarized as

follows:

1. Initialize θ and h;

2. Sample φ and δ from (3.17) given all the other parameters and h;

3. Sample the components of h sequentially based on (3.16) given θ;

4. Sample σ2 from (3.18) given all the other parameters and h;

5. Sample µ from (3.19) given σ2, φ and h;

8Since µ can be sampled independently, the prior of µ has no effect on sampling the other parameters
and the vector of latent volatilities. That is why we do not put the prior of µ into the joint posterior.
When the prior of µ is required for further inferences, for instance for calculating the marginal likelihood,
it can be assumed to be Gaussian with constant mean and variance.
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6. Goto 2 and iterate for N0 +N times;

where N0 is the number of iterations in the burn-in period and N is the simulation

sample size.

Two important points should be noted. First, φ and δ are sampled simultaneously

according to the Metropolis-Hastings rule, rather than a single-move procedure.9 Sec-

ond, when updating ht (t = 1, 2, · · · , T ) sequentially in Step 3, we only calculate the

partial posterior of ht which is the product of relevant terms containing ht in (3.16).

For instance when δ 6= 0, the partial log-posterior of ht is (ignoring the end conditions

to save space)

ln p(ht|θ) ∝ −
1

2δ
log(1 + δht)−

1

2
X2
t (1 + δht)

−1/δ

−
1

2σ2
[(ht − µ)− φ(ht−1 − µ)]2 −

1

2σ2
[(ht+1 − µ)− φ(ht − µ)]2 ,

and when δ = 0, the partial log-posterior of ht becomes

ln p(ht|θ) ∝ −
1

2
ht −

1

2
X2
t exp(−ht)

−
1

2σ2
[(ht − µ)− φ(ht−1 − µ)]2 −

1

2σ2
[(ht+1 − µ)− φ(ht − µ)]2 .

In such a way to update ht, the computational cost is greatly reduced.

As in Meyer and Yu (2000) we use the convergence checking criteria available in

the CODA software to check whether convergence has been achieved. All the results

we report in this paper are based on samples which have passed the Heidelberger and

Welch convergence test for all parameters.

To measure the simulation inefficiency, we use the integrated autocorrelation time,

IACT (Sokal (1996)), which is also referred to as the inefficiency factor by Kim et al.

(1998). Following Meyer and Yu (2000), we calculate IACT of a parameter (say z) using

IACT =
var(z̄MC)×N

var(z)
,

where the square root of var(z̄MC) is the Monte Carlo standard error and var(z) is the

variance of the posterior distribution. To estimate var(z), we use the empirical variance

9See Chib and Greenberg (1995) for detailed discussion on the Metropolis-Hastings algorithms.
When updating φ and δ, the random numbers are generated from the proposal Gaussian density on an
elliptical contour. This strategy may increase the sampling efficiency.
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from an MCMC output. To estimate the square root of var(z̄MC) we use the estimate

suggested in Geweke (1992) based on estimating the spectral density.

3.3 Volatility Estimate, Likelihood Evaluation, and Likelihood

Ratio Test

Since MCMC methods provide samples from the joint posterior distribution of all the

parameters (including both model parameters and latent volatilities), a natural way for

estimating volatility is to integrate out the model parameters from the posterior. This is

a Bayesian approach and has been suggested in Jacquier et al. (1994). Alternatively, one

can make the use of the so-called particle filter techniques, a class of simulation-based

methods developed in recent statistics literature for filtering nonlinear non-Gaussian

state space models. Important contributions in this area of research include Gordon,

Salmond and Smith (1993), Kitagawa (1996), and Pitt and Shephard (1999). As a

byproduct of filtering, one can do diagnostic checking to look for some suggestion of

what is wrong with the model, and to evaluate the likelihood function of the model at

the posterior mean.

In the context of SV models, Kim et al. (1998) explain how to use the method

developed by Pitt and Shephard (1999) while Berg et al. (2002) discuss the method

proposed by Kitagawa (1996). In this paper we employ Kitagawa’s filtering algorithm

using 50, 000 particle points. However, we should point out that Kitagawa’s algorithm

is not necessarily the most efficient. Perhaps a more efficient algorithm for filtering a

SV model is in, for example, Pitt and Shephard (1999).

Once likelihood is evaluated at the posterior mean, one can make statistical compar-

isons of the proposed N-SV model and any standard SV model. Since the N-SV model

nests all standard SV models, a simple test statistic is the likelihood ratio test defined

by

LR = 2{ln f(x|M1, θ̂)− ln f(x|M0, θ̂)},

where M1 and M0 denote the N-SV model and a standard SV model respectively. For

non-nested model comparison, one can use the non-nested likelihood ratio test developed

by Atkinson (1986) for classical inferences, or for Bayesian inferences use the Bayesian
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factor (Chib (1995)) if the prior is proper or deviance information criterion (Berg et al.

(2002)) regardless of properties of the prior. We focus on the likelihood ratio test in this

paper.

3.4 Simulation Studies

To check the reliability of the proposed MCMC algorithm for estimation of N-SV models

and for model comparison, we apply our algorithm to a generated dataset. We generate

one data series of 2000 observations from the N-SV model using the following parameter

values: µ = −0.2, σ = 0.2, φ = 0.95 and δ = 0.2. All these parameter values are

selected to be representatives of typical daily exchange rates.10 The generated return

and volatility series are plotted in the first two panels in Figure 2.

In both the simulation and empirical studies (in Section 4), we estimate the N-SV

model using the proposed MCMC algorithm. For comparison purposes, we also estimate

the lognormal SV model and for this we employ the all purpose Bayesian software pack-

age BUGS based on the single-move Gibbs sampler as described in Meyer and Yu (2000)

for ease of implementation. In all cases we choose a burn-in period of 50,000 iterations

and a follow-up period of 500,000, and store every 50th iteration. The MCMC sampler

is initialized by setting φ = 0.95, σ2 = 0.02, and µ = 0 for the lognormal SV model and

arbitrarily initialized for the N-SV model. The same prior distributions are used for the

common parameters in both models.11 The hyperparameters are, respectively, p = 10.0,

ω = 20.0, γ = 1.5, Sσ = 0.1, µδ = 0.2 and σ2
δ = 0.25.

In Table 2 we summarize the results from estimation and model comparison, includ-

ing the posterior means, standard deviations, Monte Carlo standard errors (MC SE),

IACT’s for all the parameters, the likelihood values for both models, and the likeli-

hood ratio statistic and associated p value for the null hypothesis of the lognormal SV

model against the N-SV model. For the N-SV model we also report the 90% Bayesian

confidence intervals for all the parameters.

10See the empirical results below and Shephard and Pitt (1997) on parameter settings for simulation
purposes.

11The only exception is for µ. In the lognormal SV model we choose an informative but reasonably
flat prior distribution for µ (i.e. a normal distribution with mean 0 and variance 25) while in the N-SV
model we use a diffuse prior for the reason argued above.
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First, it can be seen that the proposed MCMC procedure can estimate very precisely

all the parameters in the N-SV model, including the key parameter, δ. Second, the 90%

Bayesian confidence interval of δ includes the true value and excludes 0, 0.5 and 1.

Consequently, we are able to reject all standard SV models as we wish. Moreover, the

likelihood ratio statistic favors the true specification and suggests some evidence against

the lognormal model. Third, comparison of IACT’s across two models shows that the

inefficiency factors in the N-SV model are substantially smaller and suggests that better

mixing is achieved in the N-SV model.

To understand the implications of the mis-specification on volatility estimates, we

obtain two filtered volatility estimates and plot the difference between the true volatility

and two estimated volatility series in panels 3-4 of Figure 2. From these two panels, the

two estimated volatility series are almost indistinguishable. To highlight the differences

between the models, we plot the differences between the two estimated volatility series

in the last panel of Figure 2. It can be seen that the estimated volatilities from both

models are very close to each other during times of normal volatility. During times of

high volatility, the differences are larger. Closer inspection shows that the two estimated

volatility sequences have a similar sample mean (0.9514 versus 0.9625) but the sample

variance of estimated volatilities is considerably smaller for the N-SV model (0.1940

versus 0.2303), indicating that while two models imply a similar level of long term

variance the N-SV model tends to generate a smoother volatility series.

4 Empirical Results for Dollar/Pound Exchange Rates

4.1 Data

SV models are often used to model the volatility of exchange rates (see for example,

Melino and Turnbull (1990), Harvey et al. (1994), Mahieu and Schotman (1998), and

Jacquier, Polson and Rossi (2002)). In this section we empirically test all standard SV

models against the proposed models using daily dollar/pound exchange rates for the

period from January 1, 1986 to December 31, 1998. The dataset is available from the

H-10 Federal Reserve Statistical Release. For convergence purposes we use the mean-
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corrected and variance-scaled returns defined by

Xt =
Yt

s(Yt)
, with Yt = (lnSt − lnSt−1)−

1

n

∑

(lnSt − lnSt−1),

where s(Yt) is the sample standard deviation of Yt and St is the exchange rate at time

t. The sample size is 3268. Since the lognormal SV model is the most widely used one

in the literature, we also estimate it for comparison.

4.2 Empirical Results

Figure 3 displays the adjusted return series. Figure 4 plots the MCMC iterations and

kernel density estimates of the marginal posterior distribution of the model parameters in

the N-SV model. In Table 3 we summarize the empirical results, including the posterior

means, standard deviations, Monte Carlo standard errors (MC SE), IACT’s for all the

parameters, the likelihood values for both models, and the likelihood ratio statistic and

associated p value for the null hypothesis of the lognormal SV model against the N-SV

model. For the N-SV model we also report the 90% Bayesian confidence intervals for

all the parameters.

A few results emerge from Table 3 and Figure 4. First, the posterior mean of δ in

the proposed N-SV model is 0.172 and the 90% Bayesian confidence interval does not

include 0, or 0.5, or 1. This is the evidence of nonlinear stochastic volatility. As a con-

sequence, one has to reject all the standard SV models used in the literature, including

the lognormal, Stein-Stein, and Heston specifications. Although all the standard SV

models are rejected, the posterior quantities of δ seem to suggest that the lognormal

model is closer to the true specification than other SV models with either δ = 0.5 or

δ = 1. Second, the posterior mean of φ (0.9676) is close to 1 in the lognormal model and

suggestive of high persistency of volatility. In the proposed N-SV model, it remains at a

similar level. In fact all the estimated parameters have similar magnitudes and similar

standard deviations across both models. Third, the likelihood ratio statistic and the

associated p value suggest that the lognormal model is rejected at the 10 percent level.

Fourth, as in the simulation study, IACT’s are large for most parameters and indicate

a slow convergence. However, all the chains mix well and the mixing is not affected

in the N-SV model. On the contrary, the inefficiency factors in the N-SV model are

16



considerably smaller than those in the lognormal model. Fifth, compared with other

parameters, δ appears more difficult to estimate and has the largest value of standard

deviation. Finally, according to our interpretation of δ, for the dollar/pound exchange

rate on average new information arrives at the market about 6 times per day.

To provide diagnostic checks for the observed series and two SV models, we follow

Kim et al. (1998, Section 4.2) and compute the forecast uniforms from one-step-ahead

forecasts for both models. Figure 5 gives the QQ-plot of the normalized innovations

obtained from the lognormal model and N-SV model respectively. The plot suggests

that there are more outliers in the normalized innovations that the lognormal SV cannot

explain than the N-SV model. Similar to Kim et al., we find that these ouliers correspond

to small values of |Xt| which are the inliers of returns. Consequently, we can conclude

that the N-SV model explains the inlier behavior better than the lognormal SV model.

As argued in Section 2, a byproduct of the new volatility modelling is that the

marginal distributions of volatility is obtained. The marginal distributions of volatility

implied from the estimated lognormal and N-SV models are plotted in Figure 6, where

the solid line is for the lognormal SV model and hence is the density function of a

lognormal distribution. It can be seen that these two distributions are not very close to

each other. For example, it appears that very little daily movement on the market is

more possible in the N-SV model than in the lognormal SV model. The finding is quite

interesting and may have important implications for risk management.

As a final comparison of the performances of the two SV models, we obtain two

filtered estimates of volatility and plot them in the second and third panels in Figure 7.

For comparison purposes, we also plot the absolute value of returns in the first panel.

The two filtered volatility series are almost indistinguishable. To highlight the differences

between the models we plot the difference between the two estimated volatility series in

the last panel. It can be seen that the estimated volatilities from both models are very

close to each other during times of normal volatility. During times of high volatility, the

differences are larger. Similar to what we have found in the simulation study, we find

that the two estimated volatility sequences have a similar sample mean (0.995 versus

1.004) but the sample variance of estimated volatilities is considerably smaller for the

N-SV model (0.3297 versus 0.3782), indicating that while two models imply a similar
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level of long term variance the N-SV model tends to generate a smoother volatility series.

As we will see below, this property has important implications on option pricing.

5 Implications on Option Pricing

Probably the most important application of the SV model is the pricing of options.

Under a set of assumptions, Hull and White (1987) show that the value of a European

call option on stocks based on a general specification of stochastic volatility is the

Black-Scholes price integrated over the distribution of the mean volatility. Using the

characteristic function approach, Heston (1993) derives a closed form solution for a

European call option based on a square-root specification of volatility. For most other

SV models, including our newly proposed N-SV model, option prices have no closed form

solution and hence have to be approximated. A flexible way for approximating option

prices is via Monte Carlo simulations. For example, Hull and White (1987) design an

efficient procedure of carrying out the Monte Carlo simulation to calculate a European

call option on stocks.

To examine the implication of our N-SV models on option pricing, we modify Hull

and White’s procedure to price currency options by taking into account the difference

between stock and currency options (which is the currency options pay a “dividend”

rate equal to the foreign interest rate; see for example Hull (1996, Ch12)).

Let C be the value of a European call option on a currency with maturity τ (measured

in number of days), strike price X, current volatility σ2
0, current exchange rate S0, and

the difference between the domestic and the foreign interest rates rd − rf . Under the

same set of assumptions in Hull and White (1987), it can be shown that

C = e−τrd
∫

∞

0

BS(wτ )pdf(wτ |h0)dwτ , (5.20)

where w2
τ is given by

w2
τ =

∫ τ

0

g(hs, δ)ds, (5.21)

and BS(wτ ) is the Black-Scholes price for a currency option

BS(wτ ) = F0N(d1)−XN(d2), (5.22)
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in which F0 = S0e
(rd−rf )τ is the forward exchange rate applying to time τ , d1 and d2 are

given, respectively, by

d1 =
ln(F0/X) + w2

τ

wτ

, (5.23)

d2 = d1 − wτ . (5.24)

In discrete time we have to approximate w2
τ . In this paper we follow the suggestion of

Amin and Ng (1993):

w2
τ ≈

n
∑

t=1

g(hi, δ), (5.25)

where n is the number of discrete time periods until maturity of the option. In this

paper, we choose the unit discrete time period to be one trading day and hence n (= τ)

is the number of trading days before the maturity.

The Monte Carlo algorithm for calculating the value of a European call option on a

currency may be summarized as follows:

1. Obtain the initial value of h0 based on the initial value of σ2
0;

2. Draw independent standard normal variates νi for 1 ≤ i ≤ n;

3. Generate hi according to

hi = µ+ φ(hi−1 − µ) + σνi, for i = 1, ..., n;

4. Calculate w2
τ using equation (5.25);

5. Calculate BS(wτ ) using equation (5.22) and call it p1;

6. Repeat Steps 3-5 using {−νi} and define the value of BS(wτ ) by p2;

7. Calculate the average value of p1 and p2 and call it y;

8. Repeat Steps 2-7 for K times and hence we should have a sequence of y’s;

9. Calculate the mean of y’s and this is the estimate of the option price.
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Our algorithm is related to the one suggested by Mahieu and Schotman (1998), but there

are several important differences. The first difference is we use an antithetic method in

Step 6 to reduce the variance of simulation errors. Secondly, our algorithm can price not

only at-the-money options but also in-the-money and out-of-the-money options while

Mahieu and Schotman only price at-the-money options. The third difference is we

can price options based on the N-SV models. Finally, we use a much larger value of

K (10,000 as opposed to 500) to ensure that the approximation errors in calculating

equation (5.20) are very small.

The algorithm is then applied to price a half-year call option based on the lognormal

and N-SV models with the estimated parameter values in Table 3 imposed.12 In both

models, we choose n = 126, S0 = 1.5, rd = 0, rf = 0, K = 10, 000, σ0 = 0.006349,13 and

S0/X takes each of the following values, 0.75, 0.8, 0.85, 0.9, 0.95, 1, 1.05, 1.1, 1.15, 1.2, 1.25.

Table 4 compares the option prices and percentage differences between the prices based

on the two estimated SV models.

The main conclusion we draw from the table is that the lognormal SV model tends

to overprice the options. In fact the N-SV option price is always no bigger than the

lognormal option prices. This finding is not surprising because we have found that

while both models have a similar value of long term variance the N-SV model tends

to generate a smoother volatility series. Prices of all the out-of-money options based

on the N-SV model are systematically lower than those based on the lognormal model

and the deep-out-of-the-money options show the largest percentage of discrepancies.

The differences in the percentage term are much smaller for in-the-money options and

eventually disappear when the in-the-money option goes very deep. Since near out-of-

money options where the strike price is within about 10% of the spot price are traded

very frequently over the counter and on exchanges, our results have important practical

implications.

12Since the parameter estimates reported in Table 3 are based on the scaled data, for the purpose
of pricing options, we have to scale the data back by multiplying the mean equation by the sample
standard error of raw data which equals 0.006321 for the dollar/pound exchange rate.

13This initial value of standard error is very close to the sample standard error of the dollar/pound
exchange rate and corresponds to a square root of volatility of 160% per year.
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6 Empirical Results for Other Exchange Rates

In this section we apply the N-SV models to daily exchange rates of four other major

currencies against the US dollar for the same sampling period as for the dollar/pound

rate. The currencies are Canadian dollar (CD), French franc (FF), German mark (GM),

and Japanese yen (JY). These data are also available from the H-10 Federal Reserve

Statistical Release. As for the dollar/pound exchange rate, we use the demeaned and

variance-scaled return. The sample size is 3268 in all cases.

Figure 8 displays all the other currencies. In Table 5 we summarize the empirical

results, including the posterior means, standard deviations, 90% Bayesian confidence

intervals for all the parameters, the likelihood values for both the N-SV and lognormal

models, and the likelihood ratio statistic and associated p value for the null hypothesis

of the lognormal SV model against the N-SV model. The number in parentheses is the

standard deviation while the number in brackets represents the 90% Bayesian confidence

interval.

A few results emerge from Table 5. First, and most importantly, in all cases the

posterior mean of δ is very close to zero and the 90% Bayesian confidence interval

contains zero, indicating suitability of the lognormal SV model. The same conclusion

is drawn from the LR test. However, in no case the 90% Bayesian confidence interval

contains 0.5 or 1 and hence rejects all the other standard SV models, including the

Stein-Stein and Heston specifications. Second, the estimated volatility process for all

the currencies except for JY is highly persistent in both models. Also, all the estimated

parameters have very similar magnitudes and similar standard deviations across both

models. Although not reported, it appears that all the chains mix well, indicating the

empirical results are reliable. Finally, since estimated δ is so close to 0, the marginal

distribution of volatility should be well approximated by the lognormal distribution.

7 Conclusions and Extensions

In this paper a class of nonlinear SV models has been proposed. The new class is based

on the Box-Cox power transformation and encompasses all standard parametric SV
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models which have appeared in the literature, including the well known lognormal SV

model. As a result, different SV specifications in the literature can be easily tested. The

MCMC approach is developed to provide a likelihood-based inference for the analysis

of proposed models. Simulation studies confirm that the proposed MCMC algorithm

works well for the new models. Empirical applications are performed first using daily dol-

lar/pound exchange rate series. Empirical results show that all the standard SV models

are rejected and hence suggest evidence of nonlinear stochastic volatility. Furthermore,

model diagnostics indicate that, without sacrificing the overall goodness-of-fit the non-

linear SV model improves the fit to the data when the market has little movement.

Moreover, this nonlinearity has important implications for pricing currency options. In

particular the lognormal models tend to overprice out-of-money options. The deeper

the out-of-money options, the larger the percentage bias. For all the other four major

exchange rate series considered, the only standard “classical” SV model which cannot be

rejected is the lognormal model. As a result, daily exchange volatility is well described

by the lognormal distribution as its marginal distribution, consistent with the results

found in recent literature (Andersen et al. (2001)).

There are some other possible extensions to our work. One possibility is to use the

suggested methodology to analyze stock data. However, since stock data often display

a strong volatility feedback feature, one has to incorporate this leverage effect into the

nonlinear SV model. Other interesting extensions would be to incorporate jumps and

long memory volatility into the model; see for example Duffie, Pan and Singleton (2000),

Andersen, Benzoni and Lund (2001), Eraker et al. (2001), Breidt, Crato and De Lima

(1998) and Robinson (2001). Finally, it would be interesting to evaluate the out-of-

sample forecasting performances of the nonlinear SV models relative to standard SV

models.
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Table 1: Alternative Stochastic Volatility Models and Parameter Relationship

Models δ µ φ

Wiggins (1987) lnσ2
t = µ+ φ(lnσ2

t−1 − µ) + σvt 0
Scott (1987)

Chesney and Scott (1989)
Taylor (1994)

Jacquier, Polson and Rossi (1994)
Harvey, Ruiz and Shephard (1994)
Kim, Shephard and Chib (1998)

Scott (1987) σt = µ+ φ(σt−1 − µ) + σvt 0.5
Stein and Stein (1991)

Andersen (1994)

Heston (1993) σt = φσt−1 + σvt 0.5 0

Hull and White (1987) lnσ2
t = µ+ lnσ2

t−1 + σvt 0 1
Johnson and Shanno (1987)

Andersen (1994) σ2
t = µ+ φ(σ2

t−1 − µ) + σvt 1

Clark (1973) lnσ2
t = µ+ σvt 0 0

Nonlinear SV
(σ2

t )δ−1

δ
= µ+ φ[

(σ2
t−1

)δ−1

δ
− µ] + σvt
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Table 2: Results for Simulated Rate

True N-SV Lognormal SV

Val Mean SD 90% CI MC SE IACT Mean SD MC SE IACT

φ 0.95 .9564 .0121 (.9348, .9741) .00019 121.9 .9598 .0120 .00050 883.7

σ 0.2 .1893 .0261 (.15, .2359) .00048 169.1 .1924 .0269 .00138 1319.7

µ -0.2 -.2105 .1144 (-.3968, -.0236) .00091 31.5 -.2137 .1256 .00269 229.0

δ 0.2 .2105 .1444 (.0011, .4355) .00250 149.9

Loglik -2657.346 -2658.990

LR Stat 3.287

p-Val 0.0698

Table 3: Empirical Results for dollar/pound Exchange Rate

N-SV Lognormal SV

Mean SD 90% CI MC SE IACT Mean SD MC SE IACT

φ .9595 .0101 (.9417, .9745) .00017 138.3 .9676 ..0091 .00026 408.2

σ .2066 .0269 (.1672, .2543) .00050 174.9 .1873 ..0268 .00090 568.1

µ -.2244 .1044 (-.3913, -.0495) .00087 35.0 -.2579 ..1095 .00103 44.1

δ .1716 .1203 (.0039, .3684) .00214 189.0

Loglik -4369.792 -4371.606

LR Stat 3.628

p-Val 0.0568
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Table 4: Comparison of Call Option Prices on Currency Based on Lognormal SV and N-
SV Models; Option Parameters: τ = 126 Days, S0 = 1.5, rd = 0, rf = 0, σ0 = 0.006349
Per Day

Lognormal SV N- SV Percentage

S0/X Option Price Option Price Difference

0.75 2.401e-5 1.172e-5 -104.86

0.8 1.511e-4 1.032e-4 -46.41

0.85 8.645e-4 7.231e-4 -19.55

0.9 0.00415 0.00386 -7.513

0.95 0.01548 0.01507 -2.721

1 0.04257 0.04213 -1.044

1.05 0.08701 0.08661 -0.462

1.1 0.1413 0.1410 -0.213

1.15 0.1971 0.1969 -0.102

1.2 0.2504 0.2503 -0.040

1.25 0.3001 0.3001 0.000

Note: In all cases, the parameter estimates in Table 3 are used.
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Table 5: Empirical Results for Other Exchange Rates

CD FF GM JY

Log- φ .9575 .9618 .9617 .8654
Normal (.0094) (.0099) (.0099) (.0278)
SV [.9372, .9741] [.939, .9781] [.9395, .9733] [.8158, .9069]

σ .233 .1841 .1772 .4284
(.0248) (.0244) (.0231) (.0515)

[.1864, .284] [.1417, .2361] [.1383, .2285] [.3473, .5169]

µ -.3024 -.2293 -.2219 -.378
(.1027) (.0918 ) (.0883) (0.0654)

[-.5016, -.0946] [-.4096, -.0476] [-.3956, -.0464] [-.4842, -.2695]

Loglik -4316.61 -4434.54 -4440.67 -4330.89

N-SV φ .9579 .9538 .9585 .8601
(.0092) (.0106) (.0105) (.0285)

[.9414, .9716] [.9346, .9691] [.9395, .9733] [.8078, .9005]

σ .2363 .2053 .1869 .4380
(.0248) (.0234) (.0235) (.0508)

[.1989, .28] [.1715, .2472] [.1519, .2284] [.3647, .5293]

µ -.3308 -.2223 -.2364 -.3880
(.1120) (.0934 ) (.0945) (0.0730)

[-.516, -.1489] [-.3769, -.0708] [-.3924, -.0829] [-.5105, -.2704]

δ -.0486 .0441 -.0786 -.0158
(.0940) (.1534) (.1668) (.0902)

[-.2108, .1003] [-.2104, .2975] [-.3514, .1988] [-.1662, .1296]

Loglik -4316.44 -4434.52 -4440.37 -4330.66

LR Stat 0.3418 0.0524 0.6174 0.4654

p-Value 0.5588 0.8189 0.4320 0.4951

Note: The number in parentheses is the standard deviation while the number
in brackets represents the 90% Bayesian confidence interval.
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Figure 1: Inversion Box-Cox transformation for various values of δ.
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Figure 2: Simulated data and filtered volatility: The first panel is the time series plot of
simulated return; the second panel is the time series plot of true volatility; the third panel
is the difference between the true volatility and filtered volatility from the lognormal
SV model; the fourth panel is the difference between the true volatility and filtered
volatility from the N-SV model; the fifth panel is the difference between the third and
fourth panels.
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Figure 3: Time series plots for dollar/pound exchange rate return
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Figure 4: MCMC sample for dollar/pound exchange rate returns in the N-SV model.
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Figure 5: Diagnostic checks of two SV models for dollar/pound exchange rate returns.
The first panel is the QQ-plot of the normalized residuals from the lognormal SV model;
the second panel is the QQ-plot of the normalized residuals from the N-SV model.
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Figure 6: Marginal densities of dollar/pound exchange rate volatility implies from the
lognormal SV model and the N-SV model. The solid line is for the lognormal SV model;
the point line is for the N-SV model.
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Figure 7: Filtered volatility for dollar/pound exchange rate returns. The first panel is
the absolute value of the return series; the second panel is the filtered volatility from
the lognormal SV model; the third panel is the filtered volatility from the N-SV model;
the fourth panel is the difference between the second and the third panels.
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Figure 8: Time series plots for Canadian dollar, French franc, German mark, and
Japanese yen/US dollar exchange rate returns.
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