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Abstract

The hypothesis that a forward term-premium (FTP) exists between
forward 1-day rates calculated from the New Zealand bank-risk yield
curve and the corresponding ex-post Official Cash Rate (OCR) is
tested by applying a single equation method for a cointegrated
system to daily data from March 1999. The results indicate that the
FTP is statistically significant for all forward horizons tested. The
results aso indicate that the estimates of the FTP appear to be an
increasing function of the forward horizon, and the FTP may be
tentatively represented as a sSimple monotonically-increasing
anaytical function. The model may be used in reverse to imply
current ex-ante expectations of the OCR.
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comments and suggestions. Feedback from participants a the 2001 New Zedand
Society of Economists conference was aso appreciated, as was technicdl
assgtance by Cheryl Moon and Monica Shin in type-setting this document.  Any
errors remain the responghility of the author. The views expressed in this paper
are those of the author, and do not necessarily reflect the views of the Reserve
Bank of New Zedand. © Reserve Bank of New Zedland



1 Introduction and background

The Official Cash Rate (OCR) has been used by the Reserve Bank of
New Zeadland (the Bank) since 17 March 1999 for adjusting the
stance of monetary policy. Market expectations of the OCR are a
useful eement of information to the Bank when forming its OCR
decison, and in the Bank's ongoing monitoring of markets. Further
discussion on these matters is contained in Krippner and Gordon
(2001). Many private sector researchers are also interested in
gauging market expectations of official rates from market data, as a
basis for trading relative to their own OCR expectations.

This article outlines a method for extracting OCR expectations from
market-quoted bank-risk interest rates. The main contribution is to
outline a relatively straightforward method for estimating the term
premium component, a key unknown within the method, and to
provide empirical estimates of this component for the New Zealand
market.

As background, one approach to caculating interest rate
expectations is to assume the pure expectations hypothesis of the
yield curve (hereafter PEH); ie mechanically calculate forward rates
from the current yield curve, and assume these correspond to
unbiased estimates of expected future rates. The PEH has received
much attention in the literature. For example, a selection of recent
international work includes a survey of related US literature by
Campbell (1995), an analysis on selected European countries by
Gerlach and Smets (1997), a study for the United Kingdom by
Cutherbertson (1996), and for Canada by Deaves (1996). The
empirical results from that work generally rgects the PEH, although
the expectations hypothesis allowing for a term premium (hereafter
EHP) is sometimes accepted. For New Zealand, Krippner (1998)
does not reject the PEH for a horizon of up to six months, based on
quarterly bank-bill and bank-bill futures data. However, using
weekly data and the horizon of the full yield curve, Guthrie, Wright
and Y u (1999) rg ects the PEH, but accepts the EHP.

The more specific topic of calculating official monetary policy rate
expectations from the yield curve has been approached by severd
authors, typically associated with central banks. Essentialy, this
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generally involves an EHP model; ie caculating or observing
forward rates from market data, and then subtracting an estimate of
the forward term premium (FTP).

For example, work undertaken at the Bank of Canada suggests that
an FTP exists between officia rate expectations and Canadian
forward rate agreements (FRAS) on bankers accepted paper.
Empirical results noted in Paguette and Streliski (1998) indicate that
the FTP increases with the maturity of the FRA (ie the horizon of
expectations), and Gravelle (1998) discusses an estimate of an FTP
that varies over time. In work undertaken at the Bank of England,
Brooke and Cooper (2000) notes that United Kingdom interbank
forward rates have an upward bias compared with actual policy rate
expectations, and that the bias increases with maturity. A popular
method used by many central banks to extract interest rate
expectations, especiadly in Europe, is that based on the work of
Nelson and Siegal (1987) and Svensson (1994). This essentialy
involves fitting a parametric function to represent the entire zero-
coupon yield curve, and then using the implied forward rates from
the related parametric forward rate function as a gauge for market
expectations of interest rates. A review of these methods and the
extent of their application is contained in Bank for Internationa
Settlements  (1999), athough the discusson does not mention
whether an FTP s, or should be, alowed for in practice.

Published private sector work on official rate expectations is less
common, perhaps because of its proprietary nature. One article is
that by Porter (1999), which discusses the use of money-market rates
to gauge officia rate expectations for the United States, the
European currency, and the United Kingdom. King (1999)
specifically discusses the time-varying nature of the FTP between
survey-based expectations of official rates and expectations implied
by market prices using the PEH. This analysis is undertaken for the
United States, Japan, Germany, and the United Kingdom.

The approach to estimating OCR expectations outlined in this article
is similar in principle to the work noted above; that is forward rates
are mechanically calculated from the yield curve, and an estimate of
the FTP is subtracted from those forward rates to leave an estimate
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of the official rate. This procedure and the appropriate background is
discussed in section 2.2

Given that the FTP is a key requirement for an OCR expectations
model, the magjor focus of the remainder of the article is concerned
with the efficient estimation of a plausible, and practically useful
FTP function. Specifically, section 3 discusses the models proposed
for estimation, section 4 discusses the data used in the estimation,
and section 5 discusses the results. Section 6 concludes by
discussing the main results, and noting potential areas for further
investigation.

2 A model for OCR expectations

Forward interest rates may be calculated from current physical
Interest rates using the following relation (contained, for example, in
Hull (2000) and Svensson (1994)).

mr (m) - nr(n)
m- n

f(n,m-n)=

(1)

where:
f(n,m-n) isthe (m-n)-day rate, n days forward;
r(m) is the current physical interest rate for maturity m (note
that al interest rates in this article are expressed on a
continuously compounding basis, unless specifically stated
otherwise);
r(n) isthe interest rate for maturity n (n<m).

Substituting m=n+1 in equation 1 gives the following relationship:

f(n)=(n+Yr(n+1) - nr(n) (2)

Note that there are dternative, perhaps more efficient, ways to extract OCR
expectations when an edimated term-premium function is dready avaladle.
However, the outline in this paper is retained because it leads directly to the
method of estimating the term-premium, as subsequently discussed.



where f(n,1) is the 1-day rate, n days forward. Hence, a series of
current interest rates with day-by-day maturities, r(n) (ie the current
yield curve), could be equally expressed as a series of forward 1-day
rates, f(n,1).

One further piece of notation is to add a time index to denote when
the series of forward 1-day rates were calculated (ie when the yield
curve was observed). Hence f(t,n,1) is the 1-day rate, n days
forward, measured at time t. In this notation, f(t,n,1) =r(t,1), which
isthe 1-day interest rate at timet.

According to the EHP, f(t,n,1) with an allowance for a constant
should provide an unbiased expectation of r(t,1) in n days ime, or
r(t+n,1). Thismay be most generally represented as:

r(t+nl) =af(t,n)+b(t,n) xf(t,nl) +u(t +n,n) (3)
where:
a(t,n) isthe FTP parameter;

b(t,n) is the parameter relating the 1-day forward rate and the
expected 1-day rate;

u(t+n,l) isthe model disturbance;

and (t,n) denotes that each parameter is associated with the given
horizon n, and each could potentialy vary over time in the most
genera representation.

If t is today, equation 3 provides the basis for calculating
expectations of r(t+n,1) from today's yield curve, once certain
assumptions about the parameters are made. For example, the PEH

would suggest that a(t,n)=0 and b(t,n)=1, and then f(t,n,1) alone
would provide an unbiased forecast of r(t+n,1), (since
Elut+n,n)]=0). The EHP would suggest b(t,n)=1 and
a(,n?t0,so f(t,nl) would require an adjustment by a (t,n) to
provide an unbiased forecast of r(t,n,1). The analysisin this article
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assumes that a(t,n)=a(n), a constant that varies with horizon n, but
not over time. Of course, a more flexible, and perhaps redlistic,
model would alow a(t,n) to potentialy vary over time, and thisis
discussed later as an avenue for further investigation.

The practical issues behind using equation 3 as a basis for an OCR
expectations model are then: defining the current yield curve, r(t,n);
calculating forward 1-day rates, f(t,n,1), from that yield curve; and
estimating the FTP, a(n), for the required horizons that OCR
expectations are required for. This enables a “genuing” expectation
of future 1-day rates, r(t+n,1), to be calculated, and then a link from
r(t+n,1) to the OCR is required to formally complete the OCR
expectations model.

In this article, bank-risk interest rates are used to define the yield
curve, so r(t,1) is naturaly the overnight interbank rate, and a (n) is

the FTP between f(t,n,1) and “genuine” expectations of the overnight
interbank rate. In practice, as noted in Brookes and Hampton
(2000), the overnight interbank rate has almost always been identical
to the OCR since the OCR system was introduced. Hence, it is
reasonable to assume that OCR(t) is identical to r(t,1), or more
importantly, that estimates of r(t+n,1) are directly related to the
expected OCR. Thisis a convenient but not critical assumption; any
systematic difference between OCR(t) and r(t,1) or their
expectations could be captured in the a (n) if the OCR did not equal

the overnight interbank rate.

Another element of practice is that the OCR has amost aways
remained constant during the period between pre-specified OCR
announcement dates, as per the Bank’s stated intention.* Hence, if
r(t+n,1) shows any variation between OCR announcement dates (as
it often will), then it is more realistic to treat the average of r(t+n,1)
between OCR announcement dates as an estimate of the expected
OCR for that period.

®  The one exception to-date was the 50 basis point cut to the OCR on 19 September
2001, in the aftermath of the 11 September terrorist attacks on the United States.



Figure 1.
An illustration of the OCR expectations model
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Anticipating the later discussion of calculating forward 1-day rates
from market data (in section 4), and the estimates of the FTP
function (in sections 3 and 5), figure 1 illustrates the concepts
discussed above:

The first line shows bank-risk zero-coupon rates, with the dots
indicating the actual observed rates (ie market-quoted rates
transformed to a zero-coupon continuousy compounding
basis), and the connecting line showing linearly interpolated
rates.

The second line shows the forward 1-day rates calculated from
the day-by-day term-rates.

The third line shows the forward 1-day rates less the FTP
function.

The fourth (stepwise) line shows the average of the forward 1-
day rates less the FTP for each OCR period. Hence, thislineis
an estimate, as at 24 May 2001, of the market expectation for
the OCR at each of the future OCR announcement dates.
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The example above highlights that he estimate of the FTP function
IS the key consideration in the estimation of OCR expectations from
the yield curve. An FTP generally exists to alow for factors such as
the credit-risk of the issuer relative to arolling overnight investment,
and the liquidity preferences of the investor. However, the analysis
discussed in this article only involves a statistical measurement of
the FTP using historical data, so an underlying theory for the FTP is
not necessarily required.

3 Estimating the FTP

With the assumption that the parameters a (n) and b (n) do not vary

over time and OCR(t) equals r(t,1), equation 3 may be equivaently
written using OCR(t) and f(t,n,1) measured n days ago, or f(t-n,n,1):

OCR(t) =a (n) + b (n) xf (t - n,n,2) +u(t,n) (4)

This offers an approach to estimating a(n) and b(n) using
historical data. But athough the estimation of equation 4 appears
straightfoward, there are actually severa statistical issuesto address.

Firstly, evidence indicates that the OCR and forward 1-day rates are
cointegrated (the empirical results are presented and discussed in
section 5). Hence, the statistical process may be represented as the
following cointegrated system, which is adapted from Hamilton
(1994):

OCR(t) =a (n) + b (n) xf (t - n,n) +u,(t,n) (5a)
f(t,nd) = f(t- Lnl) +u,(t) (5b)
u,(t,n) = Y, (L)e(t) (5¢)
u,(t,n) = Y, (L)e(t) (56)

et) = N(O,s ?) (5)



8

The system of eguations 5 may be termed a physica-forward
system. The intuition underlying the equations 5 is that e(t)
represents unpredictable new information; that new information
influences market expectations of the OCR, which therefore changes
forward 1-day rates, and that same new information also causes
forecast errors (the difference between expectations of the OCR and
the actual realisation of the OCR later in time).

Stock and Watson (1993) outline a method, asymptotically
equivalent to full information maximum likelihood, for estimating
the parameters in equation 5a from a single equation. This analysis
follows the Stock and Watson (1993) method as outlined in
Hamilton (1994):

OCR(t) =a(n) + b(n)xf(t- n,nJ)

+'j§lpg:)f(t- n- i,n1) +v(t,n) (63)
v(t,n) =Y, (L)v(t,n) (6b)

The appropriate order of p in equation 6 is chosen so that v(t,n) is
uncorrelated with all leads and lags of wu,(t,n), and then the
parameters of equation 6 may then be estimated without bias using
OLS. However, because the error v(t,n) will not in general bei.i.d
normal, then an adjustment to the variance of the parameter
estimates may be required before any dsatistical inference or
hypothesis testing of the parameters is undertaken. Y, (L) may be
modelled as an AR(Q) process, and used to adjust the tstatistics
from the regression in equation 6a:

v(t,) = &k, (t - g,n) +et,n) (7a)
t-(s(n)):i.”)vv?- Sk, 0 (7b)
Sa S, g=1 4]

where;
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a(n) and s, are the original estimate and standard error,
respectively, from equation 6a (ie a(n)/s , is the original t
statistic);

s, and s _ are the standard deviations of v(t,n) and e(t,n)
respectively;

k , arethe autoregressive parameters of the AR(Q) process.

One approach to choosng p is to caculate the empirical
correlations of Df(t- n-i,nl1) (which is u,(t- n-i)) with the
residuals u, (t,n) obtained from an initial single-equation estimation
of equation 5a, and then choose p to capture the significant
correlations. However, the equations 5 underlying equations 6
suggests a more direct approach. Specifically, one can write a finite-
order representation for u (t,n) and u,(t) and then calculate the
expected correlations by inspection:

utm=4r, - j) (8a)
W) =4ar, etk (80)

covarfu (t,n),u,(t- n- i)]

Jvarlu,(t,n)] x/var[u, (t)]

Lh (- j).a s, r, et-n-i- k)]
Jvarlu, (¢, )] x/varlu, ()]

The indices for the e terms in the first summation range from t- n
to t, and these will “overlap” the indices for the e terms in the
second summation (and hence yield finite correlation) whenever
t-n£t-n-i-k£t,or - n+k£1i £ k. Hence, the minimum i for
non-zero correlation is - n (when k=0), and the maximum i for
non-zero correlation is + K (when k =K). All other correlations

correl(u (t,n),u,(t- n-i)) =

_covarld’

(8¢c)
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will be zero. If it is assumed that the market is perfectly efficient,
then it should be the case that u,(t,n) =e(t), ie the new information
should be incorporated into market expectations immediately, K
would equal zero, and the lagged Df (t - n- i,n,)) termsin equation
6a (ie those terns associated with i ranging from - p to 0) should be

insignificantly different from zero. This is tested empirically in
section 5.

Finaly, following the advice of Hamilton (1994) regarding imposing
the cointegrating vector when it is suggested by theoretical
considerations, and also the approach of Gravelle (1998), the
restriction b(n)=1 is imposed in equation 6 to yield the actua
eguation to be estimated:*

[OCR(t) - f(t- n,n,l)]:a(n)+§gin(t- n-i,nl)+v(t,n)  (9)

Equation 9 is estimated for each horizon n. The intuition behind the
estimation is: “what is the average systematic difference between the
1-day foward rate n days forward, and the OCR in n days time,
after allowing for te unexpected events on the n days between the
expectation being formed and the actua OCR being realised.”
Without this alowance for unexpected events (as proxied by
Df (t- n-1i,n1)), the estimate of a(n) would be dominated by the

inherent variability of the physical/forward system, and may not be
very representative of the systematic difference as sought. Even in
cases where the original data is stationary, a large autoregressive
component in the residuals may lead to a mis-leading estimate of the
term-premium in small samples.

For the horizon n, there are T - n historical data points available,
and a further n are “lost” due to the leads and lags required by the
approach. The number of independent variables used in the horizon

*  With this redriction, it is possble to st up a smple moving-average
representation for the estimation of the term-premium. This is more gopeding in
theory, but is not as draightforward to estimate in practice. Further background
and discussion on this approach are contained in Appendix 1.
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n estimation is 2n+2. Hence, the degrees of freedom for the
estimation is T - 4n- 2. With just under three years (1021 days) of
data, the degrees of freedom would be fully exhausted with n =255,
and n =244 is the maximum horizon investigated in this analysis.®

Once the estimates of a (n) are available for each horizon, a smooth
functional form by horizon may be estimated from the a(n)
estimates:

a(n) =g xUFTP(n) +d(n) (10)
where:

g isthe magnitude of the FTP,

which is

3656 e f(n+)o ae fn o
UFTP(n) =1+ — = I
()= f gexpg 365 g e 36 V.H

the “unit shape”’ of the function (f >0); and
FTP(n) =g xUFTP(n).

Notethat UFTP(n) isthe “discretised” version (ie for forward 1-day
rates) of a related function for instantaneous forward rates adapted
from Nelson and Siega (1987) and Svensson (1994), ie
f(n) =1 #1- exp(-fn)]. Essentidly, f Iis a parameter that
determines the rate at which the exponential term snrinks to zero
with maturity, and hence how the function rises asymptotically to | .
Apart from providing a “plausible” functional form for the FTP (ie
in accordance with a prior that the FTP should be a smooth,
monotonically-increasing function of maturity any point in time),
using this basis will aso enable a direct comparison to any
subsequent analysis of the yield curve based on the Nelson and
Siegal (1987) and Svensson (1994) models.

> Imposing exclusion redrictions on some of the g coefficients, and /or using a low-
order polynomid representation for the series of g coefficients (if gppropriate)
would increase the degrees of freedom. The polynomid approach has not been
investigated by the author.
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Given that an estimate of variance is associated with each estimate
of a(n), then it is most efficient to estimate equation 15 allowing for
heterokedasticity ie using weighted OLS with weights of var[a (n)].
Thisis also intuitive; there is more data available for shorter horizon
estimates of a (n), hence those estimates should be determined with

more precision, and that precison should be reflected by placing
more weight on those estimates.

Note that the above specification suggests that the FTP function is
constant over time, which is implicitly assumed to be the case in this
analysis. However, in the case where the FTP was fully time-
varying, the FTP function could potentialy change in shape and
magnitude over time.

4 The data

A series of forward 1-day rates are not typically quoted in New
Zedland (or other countries for that matter). Hence, the first task is to
generate forward 1-day rate data from the associated zero-coupon
yield curve data. The data used to construct the zero-coupon yield
curve are:

the current OCR, quoted on a discount basis;

bank-bill rates for half-monthly maturities (ie 1% to 15", or 16" to
end-of-month) from 1 to 6 months, quoted on a discount bas's,

forward rate agreements (FRAS) on 3-month bank-bills with
monthly settlements (from the 4x7 FRA to the 8x11 FRA),
guoted on a discount basis;

swaps rates, with annual maturities from 1 to 5 years, and also 7
and 10 year maturities, al quoted on a semi-annual basis.

The reasons for selecting these data is that bank-bills, FRAS, and
swaps are “liquid” instruments in the New Zeadland market (ie
frequently traded), quoted with “high density” on the yield curve (ie
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with relatively small periods of time between adjacent maturities or
settlements), and they all have a clear dependence on the current and
expected OCR (through the overnight interest rate). All of the data
are sourced from the Bank, being originaly collected from an
interbank broker. Note that the 1-year swaps rate is chosen to define
the 1-year point rather than the 9x12 FRA, since the former provides
a better link to longer-maturity swaps rates which will be used to
define the zero-coupon curve for longer horizons as more data
becomes available.

As an aside, there are other money-market instruments in the New
Zedland market that could be used to define the bank-risk yield
curve, such as bank-bill futures and foreign exchange forwards, but
their use is not explored in this article.® Also, using the government
yield curve to extract OCR expectations is not practical in the New
Zealand context, mainly because Treasury bhills are relatively
illiquid, and hence their quoted yields may not be very representative
of market OCR expectations.

The zero-coupon rates for the maturities of the instruments noted
above are calculated in the usual manner:

the OCR and bank-bill rates are transformed directly into their
equivalent continuoudy compounding form;

the FRA rates are transformed to into ther equivaent
continuoudly compounding form, and then combined with the
rates corresponding to the settlement of the FRA to create an
equivalent zero-coupon rate to the maturity of the FRA; and

the swaps rates are treated as semi-annua par bonds and the
implied zero-coupon rates corresponding to the maturity of
each swap are “bootstrapped” from the market-quoted swaps
rates.

®  Bak hill futures do have greater liquidity than FRAs in the New Zedand market,
but lack the “high dendgty” of FRAs (snce the futures are only quoted for
quarterly settlements, while FRAs are quoted for settlement each month).
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Chapters 4 and 5 in Hull (2000), for example, provide useful
background to these steps, but obviousdy New Zealand market
conventions for settlement, pricing, and maturity, are used. In
particular on the latter, the maturity associated with the bank-bill
rates in New Zealand tends to depend on the slope of the yield curve
a the time of issuance. Bank-hill rates tend to apply to the back of
the half-month tranche in an upward doping curve, and to the front
of the haf-month tranche in a downward sloping yield curve, since
this is most advantageous to the interbank issuer, which is the party
that specifies the exact maturity. Specifically allowing for this
“switching” of bank-bill maturities to the back or front of the tranche
made an immaterial difference to the estimates of a(n) and the FTP
function compared to smply using the middle of the tranche as the
maturity date for bank-bills in al cases. Hence, only the results
obtained from assuming bank-bill maturities to the middle of the
tranche are contained in the article. Further details on this and New
Zedand market conventions are available from the author.

The zero-coupon rates for each day-by-day maturity are calculated
from the points on the zero-coupon curve using linear interpolation,
and these are used to calculate all of the forward 1-day rates f (n,1)
from equation 2 corresponding to the zero-coupon yield curve at that
time. This process is repeated using yield curve data for each
trading day since the introduction of the OCR. The method outlined
above requires data for every caendar day, so the data for the

previous trading day is used to create the data for non-trading
calendar days.

The final dataset is then a series of time-series f(t,n,1) by horizon n
where time t spans from 17 March 1999 to the latest available data
(31 December 2001 in this case). The horizon n can potentialy span
from 1 day to approximately 3650 days (10 years), athough a
maximum of 244 days is sufficient given the estimation method and
the data currently available, as already discussed.

5 Theresults

The valid estimation of equation 14 requires both the OCR and
f(t,n,1) to be cointegrated for each horizon n, which is generdly
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accepted by the data. Figure 2 shows the results of unit root tests for
each horizon, indicating that the null hypothesis of a unit root is not
regjected for any f(t,nl) series, to 5 percent significance. The
relevant ADF statistic for the OCR (t) itself is-0.97, which also does
not reject the null hypothesis of a unit root to 5 percent significance.
Figure 3 indicates that the unit root hypothesis is decisively rgected
for the difference of each series, and the value of —-31.9 for the
difference of the OCR seriesitself also indicates a strong rejection.

Figure 4 shows that the hypothesis of no cointegration between the
OCR(t) and each f(t,n1) series is not usually rgected, although
there are many exceptions for longer horizons. Tests for
cointegration using data to early 2001 did not show this systematic
pattern, which suggests that the sharp and unanticipated cuts to the
OCR in the second half of 2001 may have influenced the subsequent
results. In any case, the rgection of cointegration between the
OCR(t) and f(t,nl) does not make economic sense, since it would
imply that the OCR could potentially diverge arbitrarily from
forward rate in the long-term. Hence, the analysis proceeds on the
assumption that OCR(t) is cointegrated with f(t,n1) for all
horizons.

Figure 5 illustrates the test of restrictions that the coefficients g, in
equation 9 are al zero for i=-n to 0. The results of the F-test
(indicated as a percentage, allowing for the changing degrees of
freedom) shows that this is usualy the case, but there are some
strong regjections of the null hypothesis. Hence, for consistency
between estimates of equation 9 for each horizon, the subsequent
analysis uses only the unrestricted results for each horizon.

Figure 6 illustrates the results of estimating equation 9, indicating

that a(n) is positive for each horizon.” This is apparent from the 95
percent confidence intervals, indicating that the hypothesis that

a(n)=0 may be rglected at the 5 percent level of significance for all

Strictly, the estimates of a(n) from equation 9 are actudly dl negative, due to the
way that equation is defined. However, a termrpremium is more readily
interpreted as a podtive number, so the initid esimates of a(n) ae Imply
negated.
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horizons. Also, the rising lower bound of the 95 percent confidence
band suggests that there is arising dependence of a(n) on maturity.

Figure 7 illustrates the series of residuals for the example of n=90.
Note that the “raw residuals’ (OCR(t)- f(t- n,nl)) display large
variance and autocorrelation, the residuals from the Stock and
Watson (1993) method show smaller variance but still material
autocorrelation, and the residuals from the AR(Q) process show
negligible autocorelation and small variance, except for the “spikes’
when the OCR was changed in discrete, discontinuous steps. These
“gpikes’ (indicated by the square dots) lead the AR(Q) residualsto
be non-normal, and it is not immediately obvious how to dea with
this “discontinuity”.

Figure 8 contains the results for estimating the FTP function using
the estimates of a(n) for datasets with varying ranges of n. Thefirst
FTP function estimate uses al a(n) estimates from 1 to 244 days.
However, figure 9 shows that this FTP function has the undesirable
property that it lies outside the upper 95 confidence bound of a(n)
estimates for horizons from 92 to 215. The second FTP function
estimate excludes the a(n) estimates for horizons greater than 223
days, on the grounds that the variance of the a(n) estimates
suspiciously decreases steadily for longer horizons, and this would
tend to dominate the weighted OL S estimates. This exclusion results
in afar better fit of the estimated FTP function to the a(n) estimates,
as illustrated in figure 9. The third FTP function estimate excludes
the estimates of a(n) above 223 days and below 31 days, since the
latter a(n) estimates may be sensitive to the smple assumption of
linear interpolation between the OCR and the 1-month bank-bill rate.

Figure 9 shows that this makes only a marginal difference compared
to the second estimate of the FTP function.
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Figure 2:
ADF statistics with critical values
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Figure 4.
ADF cointegration statisticswith critical values
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Figureb:
Testing therestriction that the lagged coefficientsare all zero
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Figure6:
a (n) estimates with 95 per cent confidence bounds
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Figure7:
An exampleof theresidualsfor n=90
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Figure8:
The FTP function estimates
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Conclusions and areas for further work

The strongest point to note in conclusion is that the evidence for a
positive FTP in bank-risk interest rates is very strong. This suggests
that expectations of the OCR calculated on the basis of the PEH (ie
assuming forward rates based on bank-risk instruments are an
expectation of the OCR) are likely to be biased above actua

expectations held by the market.
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Secondly, the evidence that the OCR and forward one-day rates are
unit root series and cointegrated is also very strong. This suggests
that simply using the average of the difference between historical
forward 1-day rates and the realised OCR may be a mideading
estimate of a (n), since this estimate would tend to be dominated by

the noise inherent in the physical/forward system, particularly in
small samples.

The third point is that the estimates of a (n) tend to show an increase
with horizon, which suggests that modelling the FTP as a “plausible”
smooth, monotonicaly-increasing parametric function is a useful
additional step. Indeed, each of the FTP functions estimated from the
initial estimates of a (n) have very significant parameters, athough
the FTP function estimates can vary widely depending on which
a (n) estimates are included in this second estimation.

In answer to the natural question “which FTP function should we
use?’, the author suggests the 31-223 day estimate rather than the O-
223 day edtimate. As background to this suggestion, the bank-risk
yield curve shows a spread to the government yield curve that
continues to increase (albeit owly) out to a 10-year maturity, and
one would naturally expect the government yield curve to be based
on OCR expectations. In combination, these stylised facts suggest
that the degree to which the bank-risk yield curve overstates OCR
expectations should continue to increase with horizon. Hence, the
curve that “flattens out” the dowest with horizon (ie the curve with
the lowest f) is likely to be the best approximation to the “true” FTP.
This aso suggests that the estimate of f may continue to decline as
more data for the FTP function estimation becomes available, and
this indeed has proved the case between subsequent updates of the
analysis.

The final point in conclusion is that the assumption of constant a (n)
coefficients and a constant FTP function over time may be too
restrictive. The author intends to investigate the genera topic of the
time-varying component of the FTP in future work, and this may be
facilitated by the moving-average form outlined in Appendix 1.
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In the meantime, the method outlined in this article is still likely to
prove useful in extracting OCR expectations from the New Zedand
bank-risk yield curve. A similar model may also be useful for
extracting official rate expectations from the yield curves of other
countries, and thiswill also be investigated in future work.
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Appendix: The moving-aver age estimation of a(n)

The model represented by equation 9 may aternatively be expressed
in a moving-average form. This form is more appealing in theory,
since it is both fully parametric and parsimonious.

According to EHP, the evolution of the forward rate corresponding
to agiven date over time may be written as:

f(t-n+Ln-1Y=f(t- n,n) +q(t- n+D)+e(t- n+1) (A.1)

where;
f(t-n,n,1) is the 1-day rate, n days forward, measured at time t-
n. Thisisthe time t-n predictor of r(t,1).
f(t-n+1,n-1,1) is the 1-day rate, n-1 days forward, measured at
timet-n+1. Thisisthetimet-n+1 predictor of r(t,1).
g(t-n+1) is the margina 1l-day step, from n to n-1, in the
forward term premium of horizon n; and
e (t-n+1) is the innovation for time t-n+1, which is assumed for
now to have constant variance s ;.

This process may be progressively iterated from day to day, until the
given prediction date is reached, and the actual r(t,1) is realised.
Iterating equation A.1 results in a collection of the marginal forward
term premiums and innovation terms:

f(t- n+tn,n-nl) = f(t- n,nl)

+4q(t- n+i)+4et- n+i) A2
andsincef(t- n+n,n- n2) = f(t,0) =r(t,) then:
rtDd- ft-nn)=4q(t- n+i)+ae(t- n+i) (A.3)

Equation A.3 is of asimilar form to equation 9, which is easily seen
by expressing the collections of innovation terms as single variables:
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[F(tD)- f(t- n,n)]=a(n)+w(t,n) (A.4)

where;

a(n)=aq(t- n+i); and

w(t,n) =& e(t- n+i).

However, the key difference is that A.4 contains a “known” and
parsimonious moving-average (MA) structure in w(t,n) (according to
the model assumptions), compared to the corresponding norn-
parsmonious expression (the summation and residua terms) in
equation 9. For example, according to the assumption of constant
innovation variance, the overlap of innovations gives an obvious
correlation structure for w(t,n):

cov[w(t, n), w(t + s,n)] =s in-s if s<n
’ ’ ’ e,:\ O |fs3n

where s is the number of days between different observations of
w(t,n) over time.

With the “known” correlation matrix for w(t,n), estimates of both
a(n) and the time-series of innovations e(t) may be obtained by
direct application of Generalised Least Squares, ie factorising the
corrglation matrix, creating the transform of [r(t1)- f(t- n,nJ)]
and the constant using that factor matrix, and then applying OLS to
the transformed data (Hamilton (1994), for example, contains further
detaills on this standard procedure). The set of residuals from the
OLS regression is then the estimate of the time-series of innovations
e(t), and these may then be used as the basis for investigating the
potential time-varying nature of the FTP.

One practical problem in this direct MA approach is that the
correlation matrix for w(t,n) can become very large using daily data
(for the dataset used in this anaysis it would be a 1021 x 1021
matrix), and so the factorisation process is time consuming (even
when the process is made more efficient by exploiting the banded
property of the symmetric correlation matrix).
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Another problem is theoretical/empirical: preliminary investigation
by the author indicates that the assumption of a constant innovation
variance is not adequate. This inadequacy seems to arise from the
fact that innovations can be much larger for OCR review days,
compared to non-OCR review days. Not specifically allowing for
this in the assumptions for the innovation variance results in
resduals that have a large amount of negative autocorrelation,
making them unsuitable for the ongoing work into investigating an
FTP that potentially varies over time. This suggests that any further
investigation using the direct MA form would need to parametrically
account for at least two different daily innovation variances; one for
OCR review dates, and another for non-OCR review dates.

Note that the moving-average structure of the correlations in w(t,n)
makes A.4 a natura candidate for estimation using the Newey-West
approach for calculating heteroskedastic and autocorrelation
consistent standard errors for a(n). Indeed, this may be more
straightforward than the method outlined in this article, if only
estimates of a constant FTP were required. However, the application
of this method has not been investigated by the author, because it
only offers a means to improve the estimate of the variance
associated with a(n), rather than a means to estimate the innovations
in form suitable for investigating an FTP that potentially varies over
time.
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