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Glossary

ai binary variable which defines production mode i as on/off

Bt standard Brownian motion

E∗[. . . ] expected value

f(x) profit per unit time when the system is in the state x

Jwi(x) expected value of pathway wi relative to current state x

m number of possible modes of production

n number of stochastic state variables

p current state price vector

Pt vector of n underlying stochastic state variables

s current time

t time

T termination time

wi ith pathway formed by a sequence of ordered pairs wi = (θ(i); η(i))

w̃ optimal pathway

W set of pathways, such that wi ∈ W

x(s, p, z) defines current state

Xt state of the whole stochastic system at time t

ii



Glossary iii

Xθi− the limit of stochastic system X as time approaches stopping time θi

Xwi
t evaluation of stochastic system Xt with pathway wi

z vector that indicates production mode z = (a1, a2, . . . , am)

Z set of all possible possible production indicator vectors z ∈ Z

Zt production mode indicator at time t

η(i) ordered set of production modes, such that η(i) ∈ Z

θ(i) ordered set of stopping times where switching decision is made

µ(Pt, t) expectation of normally distributed change in stochastic process Pt

ρi,j correlation matrix of state variables contained within Pt

σ(Pt, t)
2 variance of normally distributed change in stochastic process Pt

φ̃(x) value of optimum pathway given initial condition x = (s, p, z)



Chapter 1

Introduction

Entry-exit problems arise frequently in real options analysis of land use. For exam-

ple, a farmer may be trying to decide which of several crops/animals to grow/run

on her land. In the farmer example, any decision can be reversed, however it may

be costly as farming infrastructure may have to be added or removed. For example,

animals may need to be liquidated or purchased, and a change of land ownership

or management may be required. Currently, most theoretical discussions of this

problem focus on a single choice. For example, Song, Zhao, and Swinton (2011)

look at the switching between two crops with switching cost and reversibility.

Dixit and Pindyck (2012) provide a close form solution for the valuation of two

options with reversibility. However, these approaches are severely limited when

considering the real world environment where there are many of options available

for land use.

1
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Song et al. (2011) use a real options analysis of the switching problem in two

dimensions to inform an empirical tests of whether farmer obey the optimal policy.

Furthermore, using the two-dimensional model they expand their analysis to look

at the consequences of government policy intervention on switching costs. They

find that government subsidization of land transition cost intended to move farmers

from one production mode to another has unforeseen consequences, in that by

reducing the cost of switching one way makes a system more dynamic.

Figure 1.1 illustrates a solution of the optimal conversion boundaries for a two-

dimensional problem, where transition from state S1 occurs if the indifference

condition of continuation value minus cost of switching is met. As intuition would

suggest the optimum boundary that dictates switching is more stringent than

a net present value analysis would suggest because it includes the valuation of

uncertainty in future returns and cost of switching (Dixit and Pindyck, 2012).

Figure 1.1: General Switching Boundaries

Currently, the Net Present Value(NPV) theory of investment is often used to assess
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the switching problem. However, this theory does not allow for the implications

of the interaction between uncertainty, irreversibility, and the choice of timing. In

contrast to NPV theory, real options analysis has multiple benefits in that it allows

us to capture the uncertainty of future returns, the sunk cost of switching that

cannot be regained, as well as the value of reversible switching and the choice of

timing (Dixit and Pindyck, 2012). The interactions between these characteristics

are important to investigate in order for a landowner to make decisions that are

consistent with optimal policy.

There are four basic computational methodologies for assessing real options: closed-

form analytic solutions, numerical solutions to partial differential equations (PDEs),

lattice models and simulation models. Closed-form solutions are the best approach

but are generally not available for real options and lattice/PDE methods. While

closed-form solutions are entirely competent, they suffer from exponential compu-

tational cost growth with dimensionality. We selected the Monte Carlo simulation

method because it can easily handle multiple underlying processes and computa-

tional effort grows linearly with dimensionality (Broadie and Glasserman, 1997;

Gamba, 2003).

The option to change land use exists in perpetuity and can be exercised at any

time. Therefore, the option is akin to an American option. To value American

options, Longstaff and Schwartz (2001) developed the least squares Monte Carlo

method (LSM). The LSM method allows for the evaluation of the optimal policy

through estimating the continuation value of the Bellman equation. Furthermore,
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Gamba (2003) provides a method for extending the LSM approach to the real op-

tions problem with interaction between options, many state variables and optimal

switching problems.

We implement a solution to the optimal switching problem using a Bellman equa-

tion and a value function approximated using basis functions. The Bellman equa-

tion is derived according to Brekke and Øksendal (1994) and we implement a

Monte Carlo numerical methodology based on the Longstaff and Schwartz (2001)

LSM method, expanded by Gamba (2003). We test the performance of the

methodology in two-dimensions and three against the findings of Longstaff and

Schwartz (2001) andMoreno and Navas (2003).

Following on from limitations present in current methods of appraising the switch-

ing problem, the motivation and aim of this research project is to develop a compu-

tational solution for switching between multiple land uses while taking into account

reversibility and switching costs. To achieve this purpose, the paper consists of five

sections. Section two presents a numerical example to demonstrate the application

of real options analysis to the switching problem, before a numerical methodology

for estimating the optimal exercise frontier is proposed in section three. Section

four presents a performance test of the proposed methodology, presents test case

results from the operational application in three dimensions, and suggests future

extensions of the operational application. Finally, a brief summary of this study

is offered in section five.



Chapter 2

Numerical Example

The purpose of this section is to illustrate the concepts underlying the estimation

of the optimal switching policy using a numerical methodology. This is achieved

by proposing and solving a simple numerical example.

Suppose there are two farmers, one farms pigs, the other corn. Over time, each

farmer is able to switch between the production of pigs and corn, but in doing

so incurs a cost of switching, denoted K. Assuming that each farmer maximises

his/her return from the land, a farmer is faced with the problem of finding the

optimal switching policy, given the costs of switching. Following the determination

of the optimal switching policy, the land can be valued as the sum of the present

value of all future cash-flows, minus switching costs. Lastly, we can find the value

of the switching option by taking the difference between the value of the land

under a no-switching policy and the value under the optimal switching policy.

5



Numerical Example 6

For the purpose of presenting a clear example, we restrict the problem to five

periods t = (0, 1, 2, 3, 4), where the option to switch land use is exercisable at cost

K = 1 at times t = 0, 1, 2, 3. For simplicity we consider a single simulation, with

no discounting. The simulated period returns generated from each land use are

illustrated in Table 2.1.

t = 0 t = 1 t = 2 t = 3 t = 4
Corn 2 3 4 1 2
Pigs 2 1 3 4 5

Table 2.1: Simulated returns to land use

The problem with all possible switching policies can be visualised as a decision

tree. The nodes represent times at which the switching decision can be made

and the branches represent the cash-flows associated with the land use between

switching times. A collection of branches form a policy, of all the possible policies

there is one optimal policy. Conditional on farming corn or pigs at time t = 0

then the options available to each farmer for our proposed example are illustrated

in Figure 2.1.
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Figure 2.1: Avaliable options for switching
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In order to find the optimal pathway, we start at the final exercise date t = 3

and compare the value from exercising the option to switch to the value from

continuing in the current state. Exercise will occur if switching is more valuable.

Intuitively at t = 3 we can only form an expectation of the future t = 4 based on

our current knowledge. However, for the purpose of this example we consider the

future is known with certainty. Therefore, a decision rule is applied at time t = 3

based on the cash flows known at t = 4. The assessment of optimal cash-flow at

t = 4 is shown by the solid red line in Figure 2.2, where the value of the optimal

switching policy, given switching costs, and conditional on farming corn or pigs is

denoted A.
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−Kc,p

A = 8

(a) t = 3 Decision tree for Corn Farmer
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A = 9

(b) t = 3 Decision tree for Pig Farmer

Figure 2.2: t = 3 Optimal Policy

Figure 2.2 illustrates that it is optimal for both farmers to be using the land for

pigs and not corn despite the cost of switching from corn to pigs. Specifically, a

farmer who enters t = 3 with pigs elects not to change, and a farmer who enters

t = 3 with corn would exercise the option to switch under the optimal policy, with

the expense of the switching cost and changes land use from corn to pigs.

In stepping back to t = 2, the optimal strategy is again found by comparing the

value of continuation and the value from switching, conditional on what the land

use is when the farmer entered t = 2. Figure 2.3 illustrates that it is again optimal

for both farmers to be using the land for pigs and not corn. That is, the farmer
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who enters t = 2 with pigs elects not to change and the farmer who enters t = 2

with corn exercises the option to switch (paying the switching cost) and changes

production mode from corn to pigs. Note also that the optimal policy determined

at t = 4 for the farmer who entered t = 3 with corn is now considered sub-optimal

and is represented by a dashed red line in Figure 2.3.
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Figure 2.3: t = 2 Optimal Policy

Stepping back another time step to t = 1, the optimal strategy is illustrated in

Figure 2.4. The decision rule is applied and the farmer who enters t = 1 with

pigs is indifferent to switching or continuation, as the value of each is the same;

therefore, the farmer elects continuation. In contrast, for the farmer who enters

t = 1 farming corn it is optimal to remain producing corn, then to switch to pigs

at t = 3. Furthermore, Figure 2.4 illustrates the sub-optimal pathways that have

been discarded as the optimal policy is recursively formed. It is important to

note that although all the alternative sub-optimal policies have been considered,

we have only ever had to consider two possible decisions at each time: one if the

farmer reaches that time and is producing corn, and one if he/she is producing

pigs.
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Figure 2.4: t = 1 Optimal policy

Stepping back to time t=0, the optimal switching policy is completed, as illustrated

in Figure 2.5. Note that the farmer who enters at t = 0 farming pigs chooses to

switch immediately to corn and switches back to pigs at t = 2.
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Figure 2.5: t = 0 Optimal Policy

The value of the optimal switching policy, given switching costs, and conditional

on farming corn or pigs at t = 0 is recorded in Table 2.2. We consider the option

to switch will add value to the land. For this example, the value of the optimal
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switching policy is contrasted with the no-switching policy. Interestingly, for the

farmer who enters t = 0 farming pigs there is little value in the switching option.

However, for the corn farmer the value is substantial.

No Switching Switching, K = 1
Ac 12 17
Ap 15 16

Table 2.2: Valuation of No-Switching and Optimal Switching Polices

The problem illustrated in this section was simplified to only one simulation. How-

ever, in accordance with the law of large numbers, we need many simulations to

make an adequate approximation of an expected value. Furthermore, in this exam-

ple because we considered only one simulation path, we proposed that the farmer

knew the future state prices with certainty. In reality decisions require the forma-

tion of expectations. Longstaff and Schwartz (2001) propose a methodology for

forming an expectation that is based on regression of the present value of simu-

lated cash-flows from t+1 to T on a set of basis functions that are evaluated using

current state prices. This methodology is expanded on in the following section.



Chapter 3

Methodology

This section proposes a methodology for solving the problem of finding the op-

timal switching policy in a multi-production mode environment, given the costs

of switching and assuming that the state of the economic system is a stochas-

tic process. Firstly, we discuss the underlying state variables. Subsequently, the

switching problem is formulated as an extended impulse control problem as origi-

nally proposed by Brekke and Øksendal (1994). Lastly, the problem is solved using

recursive Monte Carlo simulation as initially proposed by Longstaff and Schwartz

(2001) and expanded for the switching problem by Gamba (2003).

11
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3.1 Modelling The Economic System

At any point in time t the world can be represented as a system of n underlying

state variables(commodity prices) P

Pt = (Pt,1, Pt,2, ..., Pt,n) (3.1)

We assume that Pt is a continuous time stochastic process that evolves according

to the following stochastic differential equation

dPi,t = µi(Pt, t)dt+ Σjσi,j(Pt, t)dBj,t (3.2)

where we understand the stochastic process Pi,t changes in accordance with a

normal distribution, with expectation µi(Pt, t), variance Σjσ
2
i,j(Pt, t) and Bj,t is a

Brownian motion. Lastly, it is important when simulating multiple state variables

that correlations of components are included. Without loss of generality, Brownian

motions are independent and correlations between components of the vector, Pt,

can be induced through the matrix Σjσi,j(Pt, t).
1

The state of the economic system for crop production z, at time t can be repre-

sented by the stochastic process

Xt = [Pt, t, z] (3.3)

1Var(dP ) = G′G, where Gi,j = σi,j , so G is Cholesky Decomposition of variance-covariance
matrix.
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The behaviour of a stochastic process is governed by the specified functional

form of the stochastic differential equation. There are several common func-

tional forms that are well understood for their applicability to economics such

as the Arithmetic Brownian motion, Lognormal Diffusion (Geometric Brownian

motion), Ornstein-Ulenbeck Mean Reverting process, and the Cox-Ingresoll-Ross

model. We briefly expand on the financial application of Lognormal Diffusion and

Ornstein-Ulenbeck(OU) processes. Refer to Hull (2009) for further discussion.

Lognormal Diffusion has the property that the process cannot pass through zero(provided

the initial state is positive). Therefore, it is useful for modeling for stock prices

because it fits the assumption of limited liability. It has the following functional

form

µi(Pt, t) = µiPt and Σjσi,j(Pt, t) = Σjσi,j(Pt, t)Pt. (3.4)

The OU Mean Reverting process, has the property that the random variable will

revert to a long term stationary average. Therefore, it is useful for modelling

processes such as commodity prices. It has the following functional form

µ(Pt,i, t) = λ(µPi − Pt,i) where λ > 0, and σ(Pt,i) = σPi (3.5)

In the context of land use, theoretically both processes could be justified in de-

scribing how returns evolve over time. For example, a lognormal process can better

represent a trend that could be positive due to technological advances that boost

productivity Alternatively, an OU process can better reflect long-term equilibrium

conditions (Song et al., 2011). In contrast to the first example, this could be where
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technology is not changing. The specific functional form of each state variable is a

matter of inference. Simulation using Brownian motion also allows the flexibility

to collate multiple functional forms. For example, in the agricultural economy

production modes such as wool or produce will be considered commodity like and

therefore a mean-reverting process is useful for modeling prices. 2 In contrast,

there may be a production mode such as dairy farming which is not well explained

by a mean reverting process and better explained by Lognormal Diffusion.

3.2 Formulation of Switching Problem

Suppose there are multiple possible production modes in the economy, and given

the ability to switch modes through time, a series of modes will concatenate into a

pathway. Therefore, the value of a specific pathway can be determined by taking

the present value of cash flow net of switching costs along the path. Fundamen-

tally, there are numerous combinations of modes that can be concatenated into

possible pathways. Then through multiple simulations, the law of large numbers

will dominate and allow for determination of expected value. The purpose of this

section is to formulate a mathematical foundation for establishing the possible

pathways such that an optimal pathway can then be found.

Consider a piece of land that can be used for M different production modes, where

only one can be on at a time. We can define any possible state of the world using

2The trouble with the OU process is that it can become negative. This would be an acceptable
trait if we were modelling profitability as negative state prices would translate to crop/land
returns making a loss, but still in operation.
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an integer zm denoting the land’s current use such that

z ∈ (1, 2, . . . ,M) (3.6)

and let the state of the world Zt at any time t be defined

Zt ∈ {z1, . . . , zm} . (3.7)

Secondly, we take the modes of operation and use them to specify a pathway

through time. Such a pathway is defined by two elements 1) the time spent in

each mode, and 2) the sequence of occupation.

Therefore, we suppose there are certain ‘stopping times’ denoted θ when a land

owner makes a switching decision. At any stopping time θ, there exists a produc-

tion mode η that corresponds to the crop or mode of production taking place on

the land z, such that at any time t

ηθ = Zt ∈ Z for θ = t. (3.8)

Let the stopping times θ and associated production modes η be collated through

time to define a pathway w, which can be represented as a double sequence

w = (θ1, θ2, . . . ; η1, η2, . . . ). (3.9)
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With many possible combinations/sequences of operation, suppose that W repre-

sents a set of all possible pathways w1, w2, . . .

W = {w1, w2 . . . } . (3.10)

If w ∈ W is applied to the the system Xt = [Pt, t], it takes the form

Xt = X
(w)
t = [t;Pt; ηi] if θi ≤ t < θi+1, (3.11)

which is to say, the production mode remains the same until the next switching

decision θi+1, while the state variable Pt fluctuates randomly.

Having developed an expression for the possible pathways available to the land

owner through time, we now consider the optimal switching problem given costs.

Let E∗ stand for the expected value, conditional to the current state X0 = x =

(s, p, z). Secondly, define profit per time unit when the system is in the state x

as Π(x). Lastly, let K(x, η) be the cost of switching from the production mode z

to η when the state is x = (s, p, z), such that the expected value from selecting

pathway wi ∈ W is given by

Jwi(x) = E∗

[∫ ∞
s

e−r(t−s)Π(Xwi
t )dt−

∞∑
j=1

e−r(θj−s)K(Zθj ,ηj)

]
. (3.12)

We assume that switching cost satisfies:

K(z, η) > 0 for all η 6= z (3.13)
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and if Z contains more than 2 elements, we assume there is a no free lunch con-

dition such that

K(z1, z2) ≤ K(z1, z3) +K(z3, z2) if z1 6= z3 6= z2 6= z1 (3.14)

Furthermore, as there is no switching where z = η, the cost of switching K(z, z)

is zero and we only need to define K(z, η) for z 6= η. Note that irreversibility

from the current mode can be accommodated by specification of a disproportion-

ate switching cost such that K(z, η) is so large that it is irrational to consider

switching. Finally, given the current state x = (s, p, z), the optimal switching

problem is one of finding the pathway w̃ ∈ W such that the expected discounted

cash flow from operations net of switching costs is maximised

φ̃(x) = J w̃(x) := sup
w∈W

Jw(x). (3.15)

Equation (3.15) represents the multi-period problem that must be evaluated to

find the value of the optimal switching policy. For the purposes of implementing

a numerical solution, we introduce a Bellman equation, that reduces the problem

into a sequence of single period decisions. Therefore, for all stopping times τ

conditional on being in mode z at time t the Bellman equation is:

φ̃z(x) ≥ E∗
[∫ τ

s

e−r(t−s)Πz(Xt)dt− e−r(τ−s)Kz,η(τ) + φ̃η(τ)(Xτ )

]
(3.16)
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3.3 Solving the Switching Problem

This section proposes a numerical solution for approximating the valuation of the

switching problem by simulation. Simulation methods have been widely researched

and a number of methods exist for approximation by simulation including those

by Glasserman (2004), Boyle, Broadie, and Glasserman (1997) as well as Longstaff

and Schwartz (2001). The Longstaff and Schwartz (2001) Monte Carlo method of

least squares (LSM) is used in this paper. LSM was proposed by the authors as

a simulation based solution to the valuation of financial derivatives that require

estimation of the optimal exercise frontier. For example, an American type option

has an optimal exercise frontier because it can be exercised at any time during its

life. At the core, LSM is a recursive method that uses least squares to estimate

the value function of the option holder from continuation. With respect to the

switching problem in the context of LSM, Gamba (2003) proposes an extension

to the LSM method. The following sub-sections first introduce the fundamental

LSM and second extend LSM to the switching problem.

3.3.1 Monte Carlo Simulation for Real Options

Longstaff and Schwartz (2001) propose a simulation based method to determine

the optimum exercise frontier of options. This section presents the LSM method-

ology for a simple American option and explains how it is used to solve for the

optimum exercise boundary and hence value the option.
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Consider an American option that gives a contingent claim on X that expires at

T . Monte Carlo simulation is used to generate J paths for X. Where, Xt(uj)

represents the value of the process at time t along the uj simulated path. Suppose

we then divide the time span [0, T ] into N intervals of δt = T/N and let θ̃(uj)

denote the optimal policy along simulated path uj. Given that we have restricted

the problem to a set of N dates, it follows that the dates at which the farmer

can switch are restricted. Therefore, the optimal switching policy for simulation

path j is restricted to the set of possible switching times: θ̃(uj) ∈ (0 < t1 ≤ t2 ≤

. . . tN = T ).

The purpose of the LSM algorithm is to find the optimal exercise time for each

simulation with the restriction of discrete dates. The optimal policy conditional

on initial state X = (s, p, z) is found through dynamic programming. Working

backwards through time, the optimal decision is made by comparing the pay-off,

Π(tn, Xtn(uj)), with the value function, φ(tn, Xtn(uj)), such that we can define the

recursive decision rule as

φ(tn, Xtn(uj)) ≥ Π(tn, Xtn(uj)) (3.17)

as a result of the decision being optimal to exercise, the optimal stopping time

is updatedθ̃(uj) = tn. Alternatively, if it is not optimal to exercise, then the

stopping time variable remains unchanged. A Bellman equation is used to split

the continuous period problem into one with respect to the current period and the
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next. Therefore, providing a solution to φ(tn, Xtn(uj)) in discrete time

φ(tn, Xtn(uj)) = max
{

Π(tn, Xtn), e−r(tn+1−tn)E∗tn
[
φ(tn+1, Xtn+1)

]}
. (3.18)

This decision rule requires an estimate of the derivative’s continuation payoff.

Reality dictates that at time tn we cannot have perfect foresight of the forthcoming

solution. Therefore we take expectations, denoting the continuation value

Φ(tn, Xtn) = e−r(tn+1−tn)E∗tn
[
φ(tn+1, Xtn+1)

]
, Φ(T,XT ) = 0 (3.19)

The decision rule compares Φ with pay-off, Π. We work recursively back through

time from T , updating the stopping time along simulation uj. If we already have

recorded an optimal exercise time θ(uj) then it is overwritten by the new optimal

time θ̃(uj). Ultimately, once the recursion has working backwards through time

to the initial condition, the value of the option is estimated by averaging the

discounted value of the optimal pay-off across all simulations.

φ(0, x) =
1

N

J∑
j=1

e−rθ̃ujΠ(θ̃uj , Xθ̃uj
(uj)) (3.20)

At time tn, the value of continuation can be expressed as

Φ(tn, Xtn) = E∗

[
N∑

i=n+1

e−r(ti−tnΠ(u, ti; tn, T )

]
(3.21)
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We form an approximation of the conditional expectation function at time tn using

least squares regression onto a set of basis functions Li(X), such that

Φ̃(u; tn) =
N∑
i=0

aiLi(X) N →∞, (3.22)

where the ai represent the regression constants. This process is stepped back

through time recursively and at each step the decision rule is evaluated and

recorded.

The LSM method involves two approximations: firstly, the Monte Carlo simu-

lations are used to estimate the conditional expectation function, and secondly,

the conditional expectation in value equation is replaced by its orthogonal pro-

jection using a finite set of basis functions. Therefore, the accuracy of the LSM

method is determined by the number of simulations and choice of basis functions

and consequently, each must be selected carefully. Longstaff and Schwartz (2001)

and Moreno and Navas (2003) use the LSM method to value a multi-dimensional

derivative and compare their findings to the valuation of the same option found

by Broadie and Glasserman (1997) using the stochastic mesh method. They find

that with reasonable approximation parameters3 the option value estimated is

within the 90% confidence interval established by Broadie and Glasserman (1997).

Furthermore, Moreno and Navas (2003) found that a minimum of 5 polynomial

terms were required to obtain results using LSM that are robust to the Broadie

3Longstaff and Schwartz (2001) and Moreno and Navas (2003) both test the LSM method on
a 5-dimensional call option on the maximum of five uncorrelated assets using 50,000 simulations
and the following 19 basis functions: a constant, the first five Hermite Hn(x) polynomials in
the maximum of the five assets, the second to fifth maximums and their square values, the four
products of consecutive pairs of maximums, the product of the five assets
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and Glasserman (1997) 90% confidence interval. Lastly, Clément, Lamberton, and

Protter (2002) prove convergence of LSM as the number of simulated paths and

basis functions tend toward infinity.

3.3.2 The Optimal Switching Problem

Following the methodology outlined in Gamba (2003), we extend the Broadie and

Glasserman (1997) LSM approach to the optimal switching problem.

Given the Bellman Equation (3.16), consider a finite time horizon [0, T ], and sim-

ulation path denoted u. The value of the land equals the maximized value of

the discounted cash flows, where the maximum is taken over all stopping times

with respect to the system X. Therefore, along simulation u, we wish to find the

optimal stopping times w̃(u) = (θ̃(u); η̃(θ̃, u)).

Propose that there are M different land uses in the given system, with current land

use denoted z and the set of all possible production modes Z = (z1, z2, ..., zM). Fur-

thermore, let the cost of switching from z to zm be Kz,zm(t,Xt) = K(t,Xt, z, zm)

and, let Πz(t,Xt) = Π(t,Xt, z) denote the payoff from being in mode z at time t.

We define the net payoff when transitioning from z to any mode zm ∈ Z

Π
′

z,zm(tn, Xtn) =

∫ tn+1

tn

Πzm(tn, Xtn)e−r(tn+1−tn)dt−Kz,zm(t,Xt); (3.23)



Methodology 23

we then redefine the Bellman equation as follows:

φ̃z(tn, Xtn) = max
zm∈Z

{
Π

′

z,zm(tn, Xtn) + e−r(tn+1−tn)E∗tn [φ̃zm(tn+1, Xtn+1)]
}

. (3.24)

The farmer switches from current mode, z to zm if the payoff plus the continuation

value from mode z is lower than the payoff plus continuation value from mode zm;

otherwise he/she remains in mode z. Subsequently, in the context of dynamic

programming, and placing the problem into an LSM setting, we can define the

continuation value for mode zm

Φ̃zm(tn, Xtn) = e−r(tn+1−tn)E∗tn [φ̃zm(tn+1, Xtn+1)]. (3.25)

Hence along simulation path u, the decision rule for switching mode is that if

Π
′

z,z(tn, Xtn(u)) + Φz(tn, Xtn(u)) < max
zm∈Z

{
Π

′

z,zm(tn, Xtn(u)) + Φzm(tn, Xtn(u))
}

(3.26)

then a switch takes place at time τ = tn ∈ θ̃(u) along path u, and the optimum

operating mode is recorded as:

η(τ, u) = argmax
zm∈Z

{
Π

′

z,zm(tn, Xtn(u)) + Φzm(tn, Xtkn(u))
}

(3.27)

otherwise, tk 6= τ /∈ θ̃(u).
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We define the path of cash-flows Az(u, s; t, T ) generated by land use conditional on

the landowner following the optimal stopping strategy for all times s, t < s ≤ T

Az(u, s; tn, T ) =



if tn /∈ θ̃(u)


Az(u, s; t, T ) for s = tn+1, tn+2, . . . , tN

Π
′
z,z(tn, Xtn(u)) for s = tn

if tn ∈ θ̃(u)


Aη(u, s; t, T ) for s = tn+1, tn+2, . . . , tN

Π
′
z,ηθ̃(u)

(tn, Xtn(u)) for s = tn

.

(3.28)

If time tn is a switching time τ ∈ θ̃(u), and the new production mode is ηθ̃(u),

then the current optimal net cash flow coincides with Π
′
z,ηθ̃(u)

and the optimal cash

flow for s, t < s ≤ T along the same simulation is determined in previous steps

of the algorithm by backward induction. Alternatively, if tn is not a switching

time, we stay in the current mode z receiving the optimal cash flow Π
′
z,z, and for

s, t < s ≤ T along the same path we get the optimal cash flow determined in

previous steps by backward recursion. Therefore, the continuation value in mode

zm is the expectation, conditional on being at (tn, Xtn), of optimal discounted cash

flows:

Φ̃zm(tn, Xtn) = E∗tn

[
N∑

i=n+1

e−r(ti−tn)A(u, ti; tn, T )

]
(3.29)
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Results

This section initially quantifies the accuracy of the proposed methodology and

then goes on to present test case results from the operational application in three-

dimensions. All analyses were implemented in Matlab and simulations were run

using a 1.4 GHZ Intel Core i5 processor.

The Least Squares Monte Carlo method makes two approximations that affect

the accuracy of the estimate. Firstly, the conditional expectation in value equa-

tion is replaced by its orthogonal projection using a finite set of basis functions.

Secondly, the Monte Carlo simulations and least-squares regressions that estimate

the conditional expectation function have a finite number of paths. We quantify

what the effect on accuracy is from making these approximations by varying the

number of simulations and basis functions on three test cases.

Subsequently, having established reasonable choices for the family of basis func-

tions, number of polynomials, and number of simulations we present an application

25
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of the methodology. In applying the methodology we find and discuss the optimal

switching boundaries for a three dimensional problem.

4.1 Accuracy of LSM

The accuracy of the LSM method is determined by the choice of three approx-

imation parameters: the family of basis functions, the number of polynomials,

and number of simulations. We analyse the relationship between these choices,

computational time, and accuracy.

To this end, we test the accuracy and computational time of the methodology by

establishing three test cases. The first model is a two-dimensional no-switching

model. A no-switching model is selected because it allows the opportunity to com-

pare the estimated valuation to the Gordon growth model (Gordon and Shapiro,

1956). The Gordon growth model is a closed form model that can be used to de-

termine the value of a perpetuity, given a constant growth rate and constant cost

of capital. The parameters of the underlying stochastic processes are summarised

in Table 4.1.

Table 4.1: Two dimensional test problem input parameters

Returns to Corn Returns to Pigs

Initial Return St=0,c 100 St=0,p 100
Drift Parameter µc 0.04 µp 0.04
Variance Parameter σc 0.20 σp 0.40
Correlation Parameter ρc,p 0.40
Discount rate r 0.08

Land conversion costs: corn to pigs Kc,p :∞; pigs to corn Kp,c :∞,
terminal time T=200 years
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The second model is a two-dimensional model with switching. The two dimensional

switching model is included as a minimum benchmark for the Monte Carlo method.

The parameters from Table 4.1 are reused with the exception that land conversion

costs are included. Specifically, switching from corn to pigs incurs Kc,p = 200; and

pigs to corn Kp,c = 200.

The last model is a three-dimensional model with switching. We expect that there

is a negative correlation between accuracy and higher dimensionality. Therefore,

we select a three dimensional model to allow us to estimate the decline in accuracy

as dimension increases. The parameters for the three-dimensional problem are

summarised in Table 4.3.

Table 4.2: Three dimensional test problem input parameters

Returns to Corn Returns to Pigs Returns to Grapes

Intial Returns St=0,c 100 St=0,p 100 St=0,g 100
Drift Parameter µc 0.04 µp 0.04 µg 0.04
Variance Parameter σc 0.20 σp 0.40 σg 0.60
Discount rate r 0.08

Assume correlation between all state variables is ρi,j = 0.4, and land conversion costs are:
Ki,j = 200;

Initially, to observe the effect of simulations on accuracy in isolation, we select a

set of basis functions that consist of a constant, the first ten Laguerre polynomials

in each asset and the cross-product of each asset. This gives us a total of 30/50

basis functions for the two/three dimensional test cases respectively. We measure

accuracy of the corn farming land value, while increasing simulations from 1,000

through to 1,000,000. For the no-switching model we use the true value ascertained

from the Gordon growth model to measure the relative accuracy of the methodol-

ogy. We do not know the true value for the second and third test cases; therefore
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we assume that the valuation obtained using 1,000,000 simulations should be close

enough to the true value to allow us to measure the accuracy of smaller numbers

of simulations. Figures 4.1 and 4.2 present the results of our analysis.

Figure 4.1: Relationship between number of simulations and accuracy

Figure 4.1 illustrates that the valuation methodology produces oscillatory conver-

gence with an increasing number of simulations. There is not a significant loss in

latency between 2 and 3 dimensions. We expect from this analysis that a choice of

50,000-100,000 simulations is sufficient to convincingly produce a valuation with

accuracy of plus or minus 10% of the true value. This is in accordance with the

findings of Longstaff and Schwartz (2001) and Moreno and Navas (2003) who use

50,000 and 100,000 simulations respectively to price a 5 dimensional Bermudian

call option.

Figure 4.2 presents accuracy with respect to the computational time. It is observed

that with greater accuracy comes greater computational cost. The proportionality

is log-linear, and therefore it is desirable to keep the number of simulations as low

as possible while retaining the desired accuracy. It is considered that computation
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of 50,000/100,000 simulations will yield adequate accuracy without disproportion-

ate computational time. Secondly, to observe the effect of basis function selection

Figure 4.2: Relationship of computational time taken to accuracy

on accuracy in isolation we select 100,000 simulations and increase the number of

basis functions. Additionally, we contrast the application of Laguerre and Hermite

families of orthogonal polynomials.1 The number basis functions increase by incre-

mentally including higher order terms of the polynomial family being evaluated.

Each set of polynomials is evaluated for each state price and the cross-product of

each state price. Lastly, we continue with the same accuracy measure that was

used to compare the choice of simulations. Figures 4.3 and 4.4 present the results

of our analysis.

Figures 4.3 and 4.4 illustrate that the selection of basis functions does not have

a significant effect on accuracy when considered relative to choice of number of

simulations. These figures also demonstrate that there is no significant difference

between the two families of polynomials, and that the measure of accuracy becomes

increasingly volatile with higher numbers of basis functions. These findings are

1For a discussion of these functions and other families of orthogonal polynomials refer to
Chapter 22 of Abramowitz and Stegun (1972)
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Figure 4.3: Relationship between number of basis functions from the Laguerre
polynomial family and accuracy

consistent with Moreno and Navas (2003) who found that the choice of basis

functions only made a slight difference on valuation, and that when the number

of polynomial terms is large (20 or more), numerical problems can appear.

Figure 4.4: Relationship of computational time taken versus accuracy

Lastly, with regard to dimensionality and the use of basis functions, Figures 4.3

and 4.4 indicate a difference in accuracy when contrasting two and three state

variable switching models. However, it appears that there exists no proportionality

between the number of basis functions, or the family of basis functions that has

any significance in determining a more accurate valuation.
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4.1.1 Three Mode Problem

The purpose of this section is to present our extension of the switching problem to

multiple dimensions. We extend the type of two-dimensional analysis presented

by Song et al. (2011), Dixit and Pindyck (2012), Luong and Tauer (2006) and

Schmit, Luo, and Conrad (2011) to a three dimensional problem, using the pro-

posed numerical methodology to determine the optimal switching boundaries. The

parameters of the underlying stochastic processes used for analysis are summarised

in Table 4.3.

Table 4.3: Three dimensional test problem input parameters

Returns to Corn Returns to Pigs Returns to Grapes

Drift Parameter µc 0.04 µp 0.04 µg 0.04
Variance Parameter σc 0.20 σp 0.40 σg 0.60
Discount rate r 0.08

Assume correlation between all state variables is ρi,j = 0.4, land conversion costs are given in
Table 4.4, and the terminal time is T=200 years. The data set used for finding the switching
boundaries is created by establishing a thee-dimensional grid of initial return conditions. Each
point on the grid is valued in accordance with the proposed methodology, conditional on the
farmer entering at t = 0 in each state of land use. We use 100,000 simulations, and choose
20 basis functions consisting of: a constant, the first three Laguree polynomials in each state
variable, the first two Laguree polynomials in the first, second and third highest of the state
variables, the lagged product of the state variables and the lagged product of the maximum
of the state variables.

We use a real options analysis in order to capture the uncertainty of future returns,

the sunk cost of switching that cannot be regained, the value of reversible switching

and the choice of timing. Therefore, transition from one state to another will only

occur if the returns from an alternative state are sufficiently high that it is optimal

to switch. Due to sunk costs and uncertainty the transition boundary will exist

below a 45 degree line. How far below the 45 degree line is determined by the

cost and uncertainty parameters of valuation. To observe these characteristics in
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three dimensions we have specifically selected the test case parameters presented

in Tables 4.3 and 4.4 to create structured variance in the cost and uncertainty

of each state. For example, the volatility of returns is lowest when growing corn

and highest when growing grapes. Therefore, if a farmer is considering a switch

to corn, his/her expectation of uncertainty in future returns will be less than if

the farmer was to switch from corn to grapes. Subsequently, the farmer needs

greater compensation by way of returns before leaving growing corn to grapes. In

contrast, the farmer growing grapes needs relatively less compensation to move to

corn.

Table 4.4: Switching costs between different modes of production

Corn Pigs Grapes
Corn 0 150 200
Pigs 100 0 200

Grapes 100 150 0

Additionally, the cost to switch between different modes of operation has been

specified for effect. It is specified that corn is the cheapest mode to change to, fol-

lowed by pigs and lastly, grapes is most expensive. The option to switch therefore

is most valuable to farmers growing grapes because he/she can exercise the option

to transition at a far lower cost. Consequently, the corn farmer is least likely to

switch due to the relatively higher cost of transition.

We present the results of the test case in Figures 4.5, 4.6, and 4.7. In order

to present the data in two-dimensions we have taken three slices of the three

dimensional interaction profile: the first slice where the current state returns are

high, S0,mode = 300, second where the state returns are middle range, S0,mode =

150, and last where the state returns are low, S0,mode = 75. Each sub-figure
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represents the optimal switching boundaries for each mode of production: corn,

pigs and grapes. Figure 4.5 illustrates that when the returns for a current mode

(a) Switch from Corn (b) Switch from Pigs (c) Switch from Grapes

Figure 4.5: Switching Boundaries, current operating mode returns high-range
S0,mode = 300

of production are high, the farmer is less likely to switch. Additionally, the state

prices of the alternative modes of productions must be higher for transition to

occur. For example, in sub-figure 4.5a the farmer is producing corn at t = 0 and

the current returns are 300, if the farmer is to consider switching, the returns

from pigs or grapes must be sufficiently greater to compensate adequately for

the uncertainty and the cost of switching. Figure 4.6 illustrates that the optimal

(a) Switch from Corn (b) Switch from Pigs (c) Switch from Grapes

Figure 4.6: Switching Boundaries, current operating mode returns mid-range
S0,mode = 150

switching boundary for a grape farmer dictates that he/she will will switch if

returns of corn are slightly greater than grapes. In contrast, for the farmer to
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transition from corn to grapes the price of grapes must be greater than twice the

price of corn. Furthermore, Figure 4.7 illustrates clearly that the corn farmer

is less likely to switch as there is a greater area of space where switching is not

optimal relative to the other modes of operation. This is because the alternative

modes ar relatively more volatile and the cost to transition is high.

(a) Switch from Corn (b) Switch from Pigs (c) Switch from Grapes

Figure 4.7: Switching Boundaries, current operating mode returns low-range
S0,mode = 75

The results of our three-dimensional analysis have been produced with acceptable

reliability, cost of computation and conform with the intuitive expectation of real

options analysis. They also present a extension to multi-dimensional real options

analysis of the optimal land use problem.

4.2 Extensions

There are a vast number of empirical applications associated with the optimal

switching policy of land use. Luong and Tauer (2006) and Song et al. (2011) have

applied a two-dimensional switching model to an empirical agricultural model.

Their analysis observed the impacts of political and technological shocks to the
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economic system. An extension of their analysis to higher dimensions is possible

with the higher-dimensional methodology proposed in this paper.

Furthermore, historically we are aware of periods through time where technology

has made processes more efficient or enabled access to market places previously

unreachable. For example, kiwifruit horticulture is a major export earner in New

Zealand. Kiwifruit production in New Zealand has recently experienced both

negative and positive shocks. Interestingly, some varieties have been afflicted by

bacterial disease, while another non-furry variety is very profitable from strong

demand in the Asian markets. The Kiwifruit farmers have an option to switch

varieties by ripping up the vines but at a cost and with additional land use options.

Also an interesting extension would be to include in the model the transitional

states that occur between switching. For example, land use transformation will

not occur immediately upon the decision to do so being made. We understand that

transformation includes a number of transitional states, which represent options

to continue, pause, accelerate or revert. For example, a sheep farmer may decide

to transition to grapes. During the transition he will have the option to revert

to sheep, or pause the transition, anticipating continuation in more favorable cir-

cumstances. Alternatively, he may wish to accelerate the transformation if grape

prices increase further.

Lastly, the performance testing we have performed could be expanded to measure

the performance of the LSM model against a parallel method of valuation. In two

dimensions, Dixit and Pindyck (2012) propose a semi-closed-form method for real

options valuation with switching costs and reversibility. Also, in higher dimensions
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Broadie and Glasserman (1997) propose a numerical method for pricing higher

dimensional options uses a stochastic mesh methodology.



Chapter 5

Conclusion

We have presented and discussed a methodology for the valuation of the opti-

mal switching policy in multiple dimensions. The valuation approach is imple-

mented using a numerical method based on the Longstaff and Schwartz (2001)

Least Squares method(LSM) which is appropriate for multi-dimensional problems

and has the flexibility to accommodate multiple stochastic processes. Further, the

LSM method is extended to the switching problem using Gamba (2003).

We have assessed the accuracy of the methodology, and demonstrated the use of

the methodology for a three-dimensional problem.
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function [ A ] = Gamba( del_t, rf, S, K, basis_functions)1
2
% ------------------------ GAMBA SWITCHING ----------------------------- % 3
% 4
% Switching Options Script. Methodology from Gamba(2003).5
% 6
% Inputs: del_t - Time step7
%       : rf - risk free rate 8
%       : S - Asset(mode) correlated GBM pathways. S(#sim,time,asset/mode)9
%       : K - Transition/switching cost matrix. K(1,2)=cost of transition10
%       from mode 1 to mode 2.Therefore, K(1,1)=0.11
%       : basis_functions - basis for LSM regression12
%13
% Output: A - The discounted optimum cash flow given switching.14
%       15

16
% 1.0 Initialization17
%   1.1 Switching costs18
%   Establish relative switch cost from-to for each asset transition path.19
%   Switch_cost has length=number of simulations, width=number of assets20
%   and holds a third dimensionality which accounts for the relativity of21
%   switching from-to e.g. with three assets the 1-1(stay), 1-2(move to22
%   two), 1-3(move to three)... there are nine combinations i.e. there are23
%   three perspectives which need to be evaluated at any time.24
T=size(S,2)-1;25
N=size(S,3);26
nsims=size(S,1);27
switch_cost=reshape(ones(nsims,1)*reshape(K',1,[]),nsims,[],N);28

29
% 2.0 Switching at terminal time = T (special case)30

31
% squeeze extracts time period asset data at termination from larger matrix32
% S. Then, replicate t=T asset value in three dimenions. This allows33
% mode conditional perspective to be evaluated as discussed above.34
period_cashflow = repmat(squeeze(S(:,T+1,:)),[1 1 N]);35
% transition represents all condit ional posibilities for switching, within36
% these there is an optimum transition.37
transition = (del_t*exp(-rf*del_t)*period_cashflow-switch_cost);38
% transition_optimum represents the optimum transition.39
transition_optimum = repmat(max(transition,[],2),[1 N]); 40
% switch_time is a binary matrix which locates(maps) the optimum path41
% values found in transition_optimum, within the possible pathways matirx42
% transition.43
switch_time(:,:,:)= transition==transition_optimum;44

45
% A is a 2D matrix, length is number of simulations, each column represents46
% the current state. A is not recorded in time, however, it is discounted47
% by through time. Therefore, it is the accumulation of optimum cash flows48
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% given switching back to t=1.49
A = squeeze(max(transition.*switch_time,[],2));50

51
% 3.0 Switching from t=1 through t=T-1(general case). 52
% This methodology follows Gamba(2003). In summary this part of the53
% function works backward in time evaluating the optimum pathway each time54
% step. At each step expectations of the future are formed using the least55
% squares method as originally set out in Longstaff and Schwartz and56
% modified by Gamba (2003). (better explaination required here)Note, we57
% cannot take expectations from S0 i.e. S0\A, because all the S0 values are58
% the same.59

60
for t= T:-1:261
    62
    % squeeze extracts time period asset data at termination from larger63
    % matrix S. Then, replicate t=T asset value in three dimenions. This64
    % allows perspective to be evaluated as discussed above.65
    period_cashflow=repmat(squeeze(S(:,t,:)),[1 1 N]);66
    67
    % transition represents all posibilities for switching. Within the68
    % possibilties there is an optimum pathway. transition is calculated by69
    % combining the discounted payoff from being in mode z and subtracting70
    % the cost of switching from z to h.71
    transition=((del_t*exp(-rf*del_t)*period_cashflow)-switch_cost);72
    73
    % continuation is the replication of Matrix A (discounted continuation74
    % value from simulation paths) replicated into three dimensions for use75
    % with the mode dependent conditional function of switch_time which76
    % maps optimum mode transition.77
    continuation=repmat(A,[1 1 N]);78
  79
    % perform projection - form expectations of payoffs to switching. Cycle80
    % through each mode because optimum cash flow is conditional on being81
    % in each mode. Matrix A is regressed using a set of user defined basis82
    % functions on the set of simulated asset values S at time t. function83
    % fit_and_evaluate only works in two dimensions, therefore, the for84
    % loop is used to cycle through the respective asset positions(columns)85
    % in matrix A.86
     87
    [BFn] = evaluate_beta(basis_functions,squeeze(S(:,t,:)));88

89
    for i = 1:1:N90
        regression_coeff = BFn\A(:,i);91
        expect_A(:,:,i)=BFn*regression_coeff;92
        93
%         Regression analysis - R^2 and RMSE94
%         r2(t,i) = 1 - sum((A(:,i)-expect_A(:,:,i)).^2)/sum((A(:,i)).^2);95
%         rmse (t,i) = sqrt(mean((A(:,i) - expect_A(:,:,i)).^2));96
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    end97
    98
    % cond_approx represents the expected continuation value(E*[A]) +99
    % transition(current period cash flow - switching cost)100
    cont_approx=repmat(expect_A,[1 N])+transition;101
    cont_approx_optimum=repmat(max(cont_approx,[],2),[1 N]);102
    % switch_time is the decision rule for switching along the w-th103
    % simulation path.104
    switch_time(:,:,:)= cont_approx==cont_approx_optimum;105
    % Update A. Calculate new cashflows using *actual* payoffs to106
    % switching. Lastly, discount back one timestep for next backward107
    % recursion of for loop t-1.108
    A = exp(-rf*del_t)*squeeze(max((transition+continuation).*switch_time,[],2));109

110
end111

112
% Account for final period from S0 through to S1. Therefore, present value113
% is at t=0.114
period_cashflow=del_t*exp(-rf*del_t)*squeeze(S(:,1,:));115
A = A+period_cashflow;116

117
end118

119
120
121
122
123
124
125
126
127
128
129
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function [ S ] = GBM( S0 , mu , sigma , del_t , T , nsims , cov )1
% Function to generate correlated sample paths for multiple variables 2
% assuming geometric Brownian motion.3
%4
% Inputs: S0 - t=0 return5
%       : mu - expected drift6
%       : sigma - expected volatility7
%       : cov - covariance matrix8
%       : del_t - size of time steps9
%       : T - number of time steps to calculate10
%       : nsims - number of simulation paths to generate11
%12
% Output: S - a (steps+1)-by-nsims-by-nassets 3-dimensional matrix where13
%             each column represents a time step, each row represents a14
%             seperate simulation run and each 3rd dimension represents a15
%             different dimension.16

17
% number of state variables, N18
N=size(S0,2);19

20
%  inputs into multiple dimensions21
del_t=repmat(del_t,[nsims T N]);22
S0=repmat(reshape(S0,1,1,[]),nsims,T);23
sigma=repmat(reshape(sigma,1,1,[]),nsims,T);24
mu=repmat(reshape(mu,1,1,[]),nsims,T);25

26
% Cholesky factorization on the covariance matrix27
c=chol(cov);28

29
% generate correlated random sequences and paths30
    % generate uncorrelated random sequence31
    d_z=randn(T*nsims,N);32
    % correlate the sequences33
    corr=d_z*c;34
    35
% generate potential paths (GBM)36
    % arrange random sequences into simulations37
    innovs=reshape(corr,nsims,[],N);38
    % GBM pathway generation39
    % For correlations:40
    %innovs=innovs.*sigma.*sqrt(del_t)+(mu-0.5.*sigma.^2).*del_t;41
    % For covariances:42
    innovs=innovs.*sqrt(del_t)+(mu-0.5.*sigma.^2).*del_t;43
    innovs=cumsum(innovs,2);44
    S=S0.*exp(innovs);45
    S=[S0(:,1,:),S];46

47
end48
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function [ polyfn ] = polyfn_build( poly_input )1
%   This function calls the polynomial family builder functions. If2
%   additional polynomial familys are required add additional if statement3
%   input and call function.4
%   5
%   Inputs: poly_input = row vector which contains two inputs. The first is6
%                        the polynomial type. The second, is the degree of7
%                        polynomial required. For example, [ 1  2 ] would8
%                        call the first two Laguerre polynomials.9
%10
%   Outputs: polyfn = matrix which contains all the coeffieint terms of the11
%                     selected polynomial family. polyfn is fliped to12
%                     accomodate the matlab function 'polyval.m' which13
%                     works from right to left. eg [2 0 3 0 1] is equvilent14
%                     to 2*X^4 + 0*X^3 + 3*X^2 + 0*X + 1*Constant.15

16
17

if poly_input(1) == 118
    polyfn=Laguerre_builder(poly_input(2));19
end20

21
if poly_input(1) == 222
    polyfn=Hermite_builder(poly_input(2));23
end24

25
 % Flip the poly co-eff matrix to correct format for 'polyval.m' 26
 polyfn = fliplr(polyfn); 27

28
end29

30
31
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function [ basis_functions ] = Basis_build( dim, construct,...1
    weight_fn, alpha_values, alpha_power, lags, prod_all)2
%3
%------------------------ basis_functions.m -------------------------------4
%5
% Function to generate a structural array of basis functions for use in the6
% regression function 'fit_and_evaluate.m'. This function builds a set of7
% basisfunctions from options which can be toggled by the user. The8
% avaliable options are consistent with the basis functions selected for9
% multi-dimensional option analysis in Longstaff & Schwartz, 2001(refer10
% section 8.1).11
%12
% Inputs: dim - number of dimensions to being evaluated13
%       : construct - first column calls polynomial type (1= Laguerre, 2=14
%       Hermite). Second column calls degree of polynimial i.e. if 2 then15
%       the first two polynomials are called from the family excl constant.16
%       Next n(dimensions considered) are assets S1, S2,... etc. lastly,17
%       the rows from n+2 through 2*n+2 represent the sorted values of the18
%       asset X1, X2, X3 etc. Note, if construct = 1 then a constant only19
%       will be included in the basis set. If construct = 0 then no20
%       constant nor polynomial terms will be included in the basis set.21
%           Input example: three dimensional problem, third degree laguerre22
%       polynomial in all assets and sorted assets. Furthermore a lagged23
%       cross product is included in the second order laguerre in all24
%       assets and assets sorted.25
% 26
%       construct = [1 2 1 0 0 0 0 0;27
%                    1 2 0 1 0 0 0 0;28
%                    1 2 0 0 1 0 0 0;29
%                    1 2 0 0 0 1 0 0;30
%                    1 2 0 0 0 0 1 0;31
%                    1 2 0 0 0 0 0 1;32
%                    1 1 1 1 0 0 0 0;33
%                    1 1 0 1 1 0 0 0;34
%                    1 1 0 0 0 1 1 0;35
%                    1 1 0 0 0 0 1 1]36
%37
%       : weight_fn - input function handle for weighting of all basis38
%         terms39
%       : alpha_values - toggle(1|0 = on|off) inlcudes a basis fn for each40
%         individual asset value eg S1, S2,... i.e.41
%         alpha_values(1,:) toggles alpha(unsorted) inclusion in basis42
%         alpha_values(2,:) toggles alpha sorted inclusion  43
%       : alpha_power - toggle asset values to a power term. Input format=44
%         (N|0 = on(degree)|off). i.e.45
%         alpha_power(1,:) toggles alpha(unsorted)^N basis inclusion46
%         alpha_power(2,:) toggles alpha sorted^N basis inclusion    47
%       : lags - toggle(1|0 = on|off) lagged product of assets eg S1*S2,48
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%       S2*S3, ...49
%       : prod_all - toggle(1|0 = on|off) product of all assets eg50
%       S1*S2*S3...51
%52
% Outputs - basis_functions is a structural array with four fields. The53
% size of the field is determined by the number of basis functions and the54
% inputs above. Specifically, the following feilds are output:55
%56
%       : basis_functions.polynomial - Contains poly coefficients. Further,57
%       ones in the first order are used to ensure compatibility of array58
%       dimensionality with basis functions set.59
%60
%       : basis_functions.weightingfn - Contains handle @function for61
%       dim=# basis functions62
%63
%       : basis_functions.alphas - If eval_sorted_alpha=0. This contains64
%       binary code which dictates how the assets are selected for the65
%       collation of basis functions. If eval_sorted_alpha=1, then, this66
%       feild is full of zeros - effectively turning off the evaluation of67
%       basis functions with unsorted asset values.68
%69
%       : basis_functions.alphasortedS - equivilent and opposite function70
%       to field: basis_functions.alphas71

72
%Establish the required length(# of basisfn) of array: basis_functions;73
if sum(construct(:)) == 074
    constant = 0; 75
else76
    constant = 1;77
end  78

79
if size(construct,2) > 180
    num_polyfn = sum(construct(:,2));81
else82
    num_polyfn = 0;83
end84
    85
num_basis=(dim-1)*lags + prod_all + constant + sum(alpha_values(:))...86
    + sum(logical(alpha_power(:))) + num_polyfn;87

88
89

% ----------------- Build Polynomial Terms -----------------%90
[ poly, alpha_poly_eval, alpha_sorted_poly_eval ] = poly_build (construct, num_basis, dim);91

92
% Input polynomial coefficeints into structure array field93
for i=1:num_basis94
    basis_functions(i).polynomial=poly(i,:);95
end96
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97
% ------------------ Weighting Function --------------------%98
for i=1:num_basis99
    basis_functions(i).weightingfn=weight_fn;100
end101

102
% --------------------- Build Alphas -----------------------%103

104
[ alphas , alphasortedS ] = ...105
    alpha_build( dim , alpha_poly_eval, alpha_sorted_poly_eval, alpha_values, alpha_power, lags, prod_all);106

107
% Input alpha terms into structure array field108
for i=1:num_basis109
    basis_functions(i).alphas=alphas(i,:);110
    basis_functions(i).alphasortedS=alphasortedS(i,:);111
end112

113
114

end115
116
117
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function [ poly_output, alpha_poly_eval, alpha_sorted_poly_eval ] = poly_build( construct, num_basis, dim )1
2
%3
%The function poly_build.m builds a set of polynomial basis for use in the4
%function: fit_and_evaluate.m. 5
%6
%Inputs: construct - The first column calls polynomial type.7
%        Second column calls degree of polynimial i.e. if 2 then the first8
%        two polynomials are called from the family excl constant. Next9
%        n(dimensions considered) are assets S1, S2,... etc. lastly, the10
%        rows from n+2 through 2*n+2 represent the sorted values of the11
%        asset X1, X2, X3 etc. Note, first row includes constant in poly12
%        set. 13
%           Input example: three dimensional problem, third degree laguerre14
%        polynomial in all assets and sorted assets. Furthermore a lagged15
%        cross product is included in the second order laguerre in all16
%        assets and assets sorted.17
% 18
%        construct = [1 2 1 0 0 0 0 0;19
%                     1 2 0 1 0 0 0 0;20
%                     1 2 0 0 1 0 0 0;21
%                     1 2 0 0 0 1 0 0;22
%                     1 2 0 0 0 0 1 0;23
%                     1 2 0 0 0 0 0 1;24
%                     1 1 1 1 0 0 0 0;25
%                     1 1 0 1 1 0 0 0;26
%                     1 1 0 0 0 1 1 0;27
%                     1 1 0 0 0 0 1 1]28
% NOTE: 29
% if construct is input as above then a constant will automatically be30
% included once in the basis set.31
%32
% if construct=1 then only a constant will be included in the basis set.33
% that is no polynomial terms will be included.34
%35
% if construct=0 then no constant will be included in the basis set.36
%37
% Outputs: poly_output - matrix which contains the polynomial coefficients38
%          stored row by row for each basis. poly_output is in the form39
%          required of matlab function: polyval.m which evaluates40
%          polynomials. polyval.m is used by function fit_and_evaluate.m to41
%          evaluate polynomial basis functions.42
%          43
%          alpha_poly_eval - contains the alpha(unsorted asset values)44
%          which the polynomial is to be evalauted in. Rows correspond to45
%          rows of polynomial coefficeints stored in the matrix46
%          poly_output.47
%48
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%          alpha_sorted_poly_eval - contains the sorted asset values which49
%          the polynomial is to be evaluated in. Structure is likewise to50
%          alpha_poly_eval.51

52
53

% No constant, no polynominal54
if sum(construct(:)) == 0 55
    poly_output = [ones(num_basis,1),zeros(num_basis,1)];56
    alpha_poly_eval = [];57
    alpha_sorted_poly_eval = [];58
    return59
end60

61
% Constant only, no polyninal62
if sum(construct(:)) == 163
    poly_output = [ones(num_basis,1),zeros(num_basis,1)]64
    alpha_poly_eval = zeros(1,dim)65
    alpha_sorted_poly_eval = zeros(1,dim)66
    return67
end68

69
% preallocate matrix hand & poly_output70
hold = [];71
poly_output = [];72
max_degree = max(construct(:,2));73

74
%calculate # of iteratons required. function moves through input matrix row75
%by row.76
for i=1:size(construct, 1)77
    78
         poly_input = construct(i,1:2);79
         polyfn = polyfn_build(poly_input);80
         81
         % Adjust size of lesser degree outputs to account for higher order82
         % polynomials83
         84
         if construct(i,2) < max_degree85
             sx = size(polyfn);86
             p = zeros(sx(1),abs(sx(2)-max_degree-1));87
             polyfn = [p , polyfn];88
         end89
         90
         % Remove constant term from subsequent iterations such that it is91
         % only included once.92
         if i == 193
             constant = zeros(1,size(construct, 2)-2);94
             hand = [constant; repmat(construct(i,3:size(construct,2)),poly_input(2),1)];95
         else96
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             polyfn(1,:)=[];97
             %repmat row to allow for addtional degrees of polynomial98
             hand = repmat(construct(i,3:size(construct,2)),poly_input(2),1);99
         end100

101
         % hand off and store instruction matrix102
         hold = [hold; hand];103
         poly_output = [poly_output ; polyfn]; 104

105
end106

107
% make allowance for other basis functions included. Matlab function108
% polyval will assess in S or X by using an input of one in the second to109
% last column.110
tack_on = zeros(num_basis-size(poly_output,1), size(poly_output,2));111
tack_on(:,size(poly_output,2)-1) = 1;  112
poly_output= [poly_output ; tack_on];113

114
% Split hold matrix into alpha and alpha-sorted instruction matrices115
% respectively.116
alpha_poly_eval = hold(1:end, 1:end/2);117
alpha_sorted_poly_eval = hold(1:end, end/2+1:end);118

119
end120

121
122
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function [BFn] = evaluate(basis_functions,S)1
% Function 'evaluate.m' evaluates the regression coefficients of associated2
% with the set of basis functions (BFn).3
%4
% Inputs: basis_functions - Structural array with four fields(.polynomial,5
%         .alphas, .alphasortedS, and .weightingfn). Length of array is6
%         equal to number of basis functions. For example,7
%         basis_function(1) is equivalent to the set of instructions to8
%         form the first basis function.9
%10
% : S - Matrix of asset values [X]. Length is number of simulations,11
%   width is number of asset dimensions.12
%13
% Outputs: BFn - evaluated basis functions 14
%15
% Note - sorting of S is performed along rows/simulations and locates the16
% maximum value in the first column, and so forth.17

18
% sort along rows, maximum in leading column.19
S_sorted=sort(S,2,'descend');20

21
B = arrayfun(@(x)...22

      prod([S.^(ones(size(S,1),1)*[x.alphas]),...23
    S_sorted.^(ones(size(S,1),1)*[x.alphasortedS])],2),...24

      basis_functions,'UniformOutput',false);25
26

BFn=cell2mat(arrayfun(@(x1,x2)...27
      (prod([x1.weightingfn(cell2mat(x2)),...28

     polyval(x1.polynomial,cell2mat(x2))],2)),...29
      basis_functions,B,'UniformOutput',false));30

31
end32

33
34
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function y = expx_func(x)1
2
  y = exp(-x);3
  %y=x.^0;4

5
end6

7
  8
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